Title:
|
Portfolio optimization for pension plans under hybrid stochastic and local volatility (English) |
Author:
|
Yang, Sung-Jin |
Author:
|
Kim, Jeong-Hoon |
Author:
|
Lee, Min-Ku |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
60 |
Issue:
|
2 |
Year:
|
2015 |
Pages:
|
197-215 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Based upon an observation that it is too restrictive to assume a definite correlation of the underlying asset price and its volatility, we use a hybrid model of the constant elasticity of variance and stochastic volatility to study a portfolio optimization problem for pension plans. By using asymptotic analysis, we derive a correction to the optimal strategy for the constant elasticity of variance model and subsequently the fine structure of the corrected optimal strategy is revealed. The result is a generalization of Merton's strategy in terms of the stochastic volatility and the elasticity of variance. (English) |
Keyword:
|
pension plan |
Keyword:
|
portfolio optimization |
Keyword:
|
constant elasticity of variance |
Keyword:
|
stochastic volatility |
Keyword:
|
asymptotic analysis |
MSC:
|
90C39 |
MSC:
|
90C59 |
MSC:
|
90C90 |
MSC:
|
91G10 |
idZBL:
|
Zbl 06433679 |
idMR:
|
MR3320345 |
DOI:
|
10.1007/s10492-015-0091-9 |
. |
Date available:
|
2015-03-09T17:34:38Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144171 |
. |
Reference:
|
[1] Asch, M., Kohler, W., Papanicolaou, G., Postel, M., White, B.: Frequency content of randomly scattered signals.SIAM Rev. 33 519-625 (1991). Zbl 0736.60055, MR 1137513, 10.1137/1033136 |
Reference:
|
[2] Beckers, S.: The constant elasticity of variance model and its implications for option pricing.Journal of Finance 35 661-673 (1980). 10.1111/j.1540-6261.1980.tb03490.x |
Reference:
|
[3] Boulier, J.-F., Huang, S., Taillard, G.: Optimal management under stochastic interest rates: The case of a protected defined contribution pension fund.Insur. Math. Econ. 28 173-189 (2001). Zbl 0976.91034, MR 1835085, 10.1016/S0167-6687(00)00073-1 |
Reference:
|
[4] Boyle, P. P., Tian, Y. S.: Pricing lookback and barrier options under the CEV process.Journal of Financial and Quantitative Analysis 34 241-264 (1999). 10.2307/2676280 |
Reference:
|
[5] Cerrai, S.: A Khasminskii type averaging principle for stochastic reaction-diffusion equations.Ann. Appl. Probab. 19 899-948 (2009). Zbl 1191.60076, MR 2537194, 10.1214/08-AAP560 |
Reference:
|
[6] Choi, S.-Y., Fouque, J.-P., Kim, J.-H.: Option pricing under hybrid stochastic and local volatility.Quant. Finance 13 1157-1165 (2013). Zbl 1281.91155, MR 3175894, 10.1080/14697688.2013.780209 |
Reference:
|
[7] Cox, J. C.: The constant elasticity of variance option pricing model.The Journal of Portfolio Management 23 15-17 (1996). 10.3905/jpm.1996.015 |
Reference:
|
[8] Cox, J. C., Huang, C.-F.: Optimal consumption and portfolio policies when asset prices follow a diffusion process.J. Econ. Theory 49 33-83 (1989). Zbl 0678.90011, MR 1024460, 10.1016/0022-0531(89)90067-7 |
Reference:
|
[9] Cox, J. C., Ross, S.: The valuation of options for alternative stochastic processes.Journal of Financial Economics 3 145-166 (1976). 10.1016/0304-405X(76)90023-4 |
Reference:
|
[10] Davydov, D., Linetsky, V.: The valuation and hedging of barrier and lookback options under the CEV process.Manage. Sci. 47 949-965 (2001). 10.1287/mnsc.47.7.949.9804 |
Reference:
|
[11] Deelstra, G., Grasselli, M., Koehl, P.-F.: Optimal design of the guarantee for defined contribution funds.J. Econ. Dyn. Control 28 2239-2260 (2004). Zbl 1202.91124, MR 2078825, 10.1016/j.jedc.2003.10.003 |
Reference:
|
[12] Devolder, P., Princep, M. Bosch, Fabian, I. Dominguez: Stochastic optimal control of annuity contracts.Insur. Math. Econ. 33 227-238 (2003). MR 2039284, 10.1016/S0167-6687(03)00136-7 |
Reference:
|
[13] Fleming, W. H., Soner, H. M.: Controlled Markov Processes and Viscosity Solutions.Stochastic Modelling and Applied Probability 25 Springer, New York (2006). Zbl 1105.60005, MR 2179357 |
Reference:
|
[14] Fouque, J.-P, Papanicolaou, G., Sircar, K. R.: Derivatives in Financial Markets with Stochastic Volatility.Cambridge University Press Cambridge (2000). Zbl 0954.91025, MR 1768877 |
Reference:
|
[15] Fouque, J.-P., Papanicolaou, G., Sircar, R., Sølna, K.: Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives.Cambridge University Press Cambridge (2011). Zbl 1248.91003, MR 2867464 |
Reference:
|
[16] Fredholm, I.: Sur une classe d'équations fonctionnelles.Acta Math. 27 365-390 (1903), French. MR 1554993, 10.1007/BF02421317 |
Reference:
|
[17] Gao, J.: Optimal portfolios for DC pension plans under a CEV model.Insur. Math. Econ. 44 479-490 (2009). Zbl 1162.91411, MR 2519092, 10.1016/j.insmatheco.2009.01.005 |
Reference:
|
[18] Ghysels, E., Harvey, A., Renault, E.: Stochastic volatility.Statistical Methods in Finance Handbook of Statistics 14 North-Holland, Amsterdam (1996). MR 1602124 |
Reference:
|
[19] Haberman, S., Vigna, E.: Optimal investment strategies and risk measures in defined contribution pension schemes.Insur. Math. Econ. 31 35-69 (2002). Zbl 1039.91025, MR 1956510, 10.1016/S0167-6687(02)00128-2 |
Reference:
|
[20] Harvey, C. R.: The specification of conditional expectations.Journal of Empirical Finance 8 573-637 (2001). 10.1016/S0927-5398(01)00036-6 |
Reference:
|
[21] Jackwerth, J. C., Rubinstein, M.: Recovering probability distributions from option prices.Journal of Finance 51 1611-1631 (1996). 10.1111/j.1540-6261.1996.tb05219.x |
Reference:
|
[22] Khas'minskii, R. Z.: On stochastic processes defined by differential equations with a small parameter.Theory Probab. Appl. 11 211-228 (1966), translation from Teor. Veroyatn. Primen. 11 240-259 (1966), Russian. MR 0203788 |
Reference:
|
[23] Kim, J.-H.: Asymptotic theory of noncentered mixing stochastic differential equations.Stochastic Processes Appl. 114 161-174 (2004). Zbl 1079.60055, MR 2094151, 10.1016/j.spa.2004.05.004 |
Reference:
|
[24] Merton, R. C.: Optimum consumption and portfolio rules in a continuous-time model.J. Econ. Theory 3 373-413 (1971). Zbl 1011.91502, MR 0456373, 10.1016/0022-0531(71)90038-X |
Reference:
|
[25] Noh, E.-J., Kim, J.-H.: An optimal portfolio model with stochastic volatility and stochastic interest rate.J. Math. Anal. Appl. 375 510-522 (2011). Zbl 1202.91302, MR 2735541, 10.1016/j.jmaa.2010.09.055 |
Reference:
|
[26] Øksendal, B.: Stochastic Differential Equations. An Introduction with Applications.Universitext Springer, Berlin (2003). Zbl 1025.60026, MR 2001996 |
Reference:
|
[27] Papanicolaou, G. C., Stroock, D. W., Varadhan, S. R. S.: Martingale approach to some limit theorems.Proc. Conf. Durham, 1976 Duke Univ. Math. Ser., Vol. III, Duke Univ., Durham (1977). Zbl 0387.60067, MR 0461684 |
Reference:
|
[28] Rubinstein, M.: Nonparametric tests of alternative option pricing models using CBOE reported trades.Journal of Finance 40 455-480 (1985). |
Reference:
|
[29] Xiao, J., Hong, Z., Qin, C.: The constant elasticity of variance (CEV) model and the Legendre transform-dual solution for annuity contracts.Insur. Math. Econ. 40 302-310 (2007). Zbl 1141.91473, MR 2286948, 10.1016/j.insmatheco.2006.04.007 |
Reference:
|
[30] Yuen, K. C., Yang, H., Chu, K. L.: Estimation in the constant elasticity of variance model.British Actuarial Journal 7 275-292 (2001). 10.1017/S1357321700002233 |
. |