Previous |  Up |  Next

Article

Title: Portfolio optimization for pension plans under hybrid stochastic and local volatility (English)
Author: Yang, Sung-Jin
Author: Kim, Jeong-Hoon
Author: Lee, Min-Ku
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 60
Issue: 2
Year: 2015
Pages: 197-215
Summary lang: English
.
Category: math
.
Summary: Based upon an observation that it is too restrictive to assume a definite correlation of the underlying asset price and its volatility, we use a hybrid model of the constant elasticity of variance and stochastic volatility to study a portfolio optimization problem for pension plans. By using asymptotic analysis, we derive a correction to the optimal strategy for the constant elasticity of variance model and subsequently the fine structure of the corrected optimal strategy is revealed. The result is a generalization of Merton's strategy in terms of the stochastic volatility and the elasticity of variance. (English)
Keyword: pension plan
Keyword: portfolio optimization
Keyword: constant elasticity of variance
Keyword: stochastic volatility
Keyword: asymptotic analysis
MSC: 90C39
MSC: 90C59
MSC: 90C90
MSC: 91G10
idZBL: Zbl 06433679
idMR: MR3320345
DOI: 10.1007/s10492-015-0091-9
.
Date available: 2015-03-09T17:34:38Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144171
.
Reference: [1] Asch, M., Kohler, W., Papanicolaou, G., Postel, M., White, B.: Frequency content of randomly scattered signals.SIAM Rev. 33 519-625 (1991). Zbl 0736.60055, MR 1137513, 10.1137/1033136
Reference: [2] Beckers, S.: The constant elasticity of variance model and its implications for option pricing.Journal of Finance 35 661-673 (1980). 10.1111/j.1540-6261.1980.tb03490.x
Reference: [3] Boulier, J.-F., Huang, S., Taillard, G.: Optimal management under stochastic interest rates: The case of a protected defined contribution pension fund.Insur. Math. Econ. 28 173-189 (2001). Zbl 0976.91034, MR 1835085, 10.1016/S0167-6687(00)00073-1
Reference: [4] Boyle, P. P., Tian, Y. S.: Pricing lookback and barrier options under the CEV process.Journal of Financial and Quantitative Analysis 34 241-264 (1999). 10.2307/2676280
Reference: [5] Cerrai, S.: A Khasminskii type averaging principle for stochastic reaction-diffusion equations.Ann. Appl. Probab. 19 899-948 (2009). Zbl 1191.60076, MR 2537194, 10.1214/08-AAP560
Reference: [6] Choi, S.-Y., Fouque, J.-P., Kim, J.-H.: Option pricing under hybrid stochastic and local volatility.Quant. Finance 13 1157-1165 (2013). Zbl 1281.91155, MR 3175894, 10.1080/14697688.2013.780209
Reference: [7] Cox, J. C.: The constant elasticity of variance option pricing model.The Journal of Portfolio Management 23 15-17 (1996). 10.3905/jpm.1996.015
Reference: [8] Cox, J. C., Huang, C.-F.: Optimal consumption and portfolio policies when asset prices follow a diffusion process.J. Econ. Theory 49 33-83 (1989). Zbl 0678.90011, MR 1024460, 10.1016/0022-0531(89)90067-7
Reference: [9] Cox, J. C., Ross, S.: The valuation of options for alternative stochastic processes.Journal of Financial Economics 3 145-166 (1976). 10.1016/0304-405X(76)90023-4
Reference: [10] Davydov, D., Linetsky, V.: The valuation and hedging of barrier and lookback options under the CEV process.Manage. Sci. 47 949-965 (2001). 10.1287/mnsc.47.7.949.9804
Reference: [11] Deelstra, G., Grasselli, M., Koehl, P.-F.: Optimal design of the guarantee for defined contribution funds.J. Econ. Dyn. Control 28 2239-2260 (2004). Zbl 1202.91124, MR 2078825, 10.1016/j.jedc.2003.10.003
Reference: [12] Devolder, P., Princep, M. Bosch, Fabian, I. Dominguez: Stochastic optimal control of annuity contracts.Insur. Math. Econ. 33 227-238 (2003). MR 2039284, 10.1016/S0167-6687(03)00136-7
Reference: [13] Fleming, W. H., Soner, H. M.: Controlled Markov Processes and Viscosity Solutions.Stochastic Modelling and Applied Probability 25 Springer, New York (2006). Zbl 1105.60005, MR 2179357
Reference: [14] Fouque, J.-P, Papanicolaou, G., Sircar, K. R.: Derivatives in Financial Markets with Stochastic Volatility.Cambridge University Press Cambridge (2000). Zbl 0954.91025, MR 1768877
Reference: [15] Fouque, J.-P., Papanicolaou, G., Sircar, R., Sølna, K.: Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives.Cambridge University Press Cambridge (2011). Zbl 1248.91003, MR 2867464
Reference: [16] Fredholm, I.: Sur une classe d'équations fonctionnelles.Acta Math. 27 365-390 (1903), French. MR 1554993, 10.1007/BF02421317
Reference: [17] Gao, J.: Optimal portfolios for DC pension plans under a CEV model.Insur. Math. Econ. 44 479-490 (2009). Zbl 1162.91411, MR 2519092, 10.1016/j.insmatheco.2009.01.005
Reference: [18] Ghysels, E., Harvey, A., Renault, E.: Stochastic volatility.Statistical Methods in Finance Handbook of Statistics 14 North-Holland, Amsterdam (1996). MR 1602124
Reference: [19] Haberman, S., Vigna, E.: Optimal investment strategies and risk measures in defined contribution pension schemes.Insur. Math. Econ. 31 35-69 (2002). Zbl 1039.91025, MR 1956510, 10.1016/S0167-6687(02)00128-2
Reference: [20] Harvey, C. R.: The specification of conditional expectations.Journal of Empirical Finance 8 573-637 (2001). 10.1016/S0927-5398(01)00036-6
Reference: [21] Jackwerth, J. C., Rubinstein, M.: Recovering probability distributions from option prices.Journal of Finance 51 1611-1631 (1996). 10.1111/j.1540-6261.1996.tb05219.x
Reference: [22] Khas'minskii, R. Z.: On stochastic processes defined by differential equations with a small parameter.Theory Probab. Appl. 11 211-228 (1966), translation from Teor. Veroyatn. Primen. 11 240-259 (1966), Russian. MR 0203788
Reference: [23] Kim, J.-H.: Asymptotic theory of noncentered mixing stochastic differential equations.Stochastic Processes Appl. 114 161-174 (2004). Zbl 1079.60055, MR 2094151, 10.1016/j.spa.2004.05.004
Reference: [24] Merton, R. C.: Optimum consumption and portfolio rules in a continuous-time model.J. Econ. Theory 3 373-413 (1971). Zbl 1011.91502, MR 0456373, 10.1016/0022-0531(71)90038-X
Reference: [25] Noh, E.-J., Kim, J.-H.: An optimal portfolio model with stochastic volatility and stochastic interest rate.J. Math. Anal. Appl. 375 510-522 (2011). Zbl 1202.91302, MR 2735541, 10.1016/j.jmaa.2010.09.055
Reference: [26] Øksendal, B.: Stochastic Differential Equations. An Introduction with Applications.Universitext Springer, Berlin (2003). Zbl 1025.60026, MR 2001996
Reference: [27] Papanicolaou, G. C., Stroock, D. W., Varadhan, S. R. S.: Martingale approach to some limit theorems.Proc. Conf. Durham, 1976 Duke Univ. Math. Ser., Vol. III, Duke Univ., Durham (1977). Zbl 0387.60067, MR 0461684
Reference: [28] Rubinstein, M.: Nonparametric tests of alternative option pricing models using CBOE reported trades.Journal of Finance 40 455-480 (1985).
Reference: [29] Xiao, J., Hong, Z., Qin, C.: The constant elasticity of variance (CEV) model and the Legendre transform-dual solution for annuity contracts.Insur. Math. Econ. 40 302-310 (2007). Zbl 1141.91473, MR 2286948, 10.1016/j.insmatheco.2006.04.007
Reference: [30] Yuen, K. C., Yang, H., Chu, K. L.: Estimation in the constant elasticity of variance model.British Actuarial Journal 7 275-292 (2001). 10.1017/S1357321700002233
.

Files

Files Size Format View
AplMat_60-2015-2_5.pdf 331.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo