Previous |  Up |  Next

Article

Title: Homogenization of a dual-permeability problem in two-component media with imperfect contact (English)
Author: Ainouz, Abdelhamid
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 60
Issue: 2
Year: 2015
Pages: 185-196
Summary lang: English
.
Category: math
.
Summary: In this paper, we study the macroscopic modeling of a steady fluid flow in an $\varepsilon $-periodic medium consisting of two interacting systems: fissures and blocks, with permeabilities of different order of magnitude and with the presence of flow barrier formulation at the interfacial contact. The homogenization procedure is performed by means of the two-scale convergence technique and it is shown that the macroscopic model is a one-pressure field model in a one-phase flow homogenized medium. (English)
Keyword: porous media
Keyword: homogenization
Keyword: two scale convergence
MSC: 35B27
MSC: 76S05
idZBL: Zbl 06433678
idMR: MR3320344
DOI: 10.1007/s10492-015-0090-x
.
Date available: 2015-03-09T17:31:54Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144170
.
Reference: [1] Ainouz, A.: Homogenized double porosity models for poro-elastic media with interfacial flow barrier.Math. Bohem. 136 (2011), 357-365. Zbl 1249.35016, MR 2985545
Reference: [2] Ainouz, A.: Homogenization of a double porosity model in deformable media.Electron. J. Differ. Equ. (electronic only) 2013 (2013), 1-18. Zbl 1288.35038, MR 3065043
Reference: [3] Allaire, G.: Homogenization and two-scale convergence.SIAM J. Math. Anal. 23 (1992), 1482-1518. Zbl 0770.35005, MR 1185639, 10.1137/0523084
Reference: [4] Allaire, G., Damlamian, A., Hornung, U.: Two-scale convergence on periodic surfaces and applications.Proc. Int. Conference on Mathematical Modelling of Flow Through Porous Media, 1995 A. Bourgeat et al. World Scientific Pub., Singapore (1996), 15-25.
Reference: [5] T. Arbogast, J. Douglas, Jr., U. Hornung: Derivation of the double porosity model of single phase flow via homogenization theory.SIAM J. Math. Anal. 21 (1990), 823-836. Zbl 0698.76106, MR 1052874, 10.1137/0521046
Reference: [6] Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures.Studies in Mathematics and its Applications 5 North-Holland Publ. Company, Amsterdam (1978). Zbl 0404.35001, MR 0503330
Reference: [7] Clark, G. W.: Derivation of microstructure models of fluid flow by homogenization.J. Math. Anal. Appl. 226 (1998), 364-376. Zbl 0927.35081, MR 1650268, 10.1006/jmaa.1998.6085
Reference: [8] Deresiewicz, H., Skalak, R.: On uniqueness in dynamic poroelasticity.Bull. Seismol. Soc. Amer. 53 (1963), 783-788.
Reference: [9] Ene, H. I., Poliševski, D.: Model of diffusion in partially fissured media.Z. Angew. Math. Phys. 53 (2002), 1052-1059. Zbl 1017.35016, MR 1963553, 10.1007/PL00013849
Reference: [10] Rohan, E., Naili, S., Cimrman, R., Lemaire, T.: Multiscale modeling of a fluid saturated medium with double porosity: relevance to the compact bone.J. Mech. Phys. Solids 60 (2012), 857-881. MR 2899232, 10.1016/j.jmps.2012.01.013
Reference: [11] Sanchez-Palencia, E.: Non-Homogeneous Media and Vibration Theory.Lecture Notes in Physics 127 Springer, Berlin (1980). Zbl 0432.70002
.

Files

Files Size Format View
AplMat_60-2015-2_4.pdf 266.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo