Previous |  Up |  Next

Article

Keywords:
mixed construction; generalized topology; generalized topological space; weak generalized topology; countable subcover; $\mu _{12}^{C}$-open set; $\mu _{C}$-open set; $\mu _{\ast }^{C}$-open set; countable set
Summary:
The theory of generalized topologies was introduced by Á. Császár (2002). In the literature, some authors have introduced and studied generalized topologies and some generalized topologies via generalized topological spaces due to Á. Császár. Also, the notions of mixed constructions based on two generalized topologies were introduced and investigated by Á. Császár (2009). The main aim of this paper is to introduce and study further new generalized topologies called $\mu _{12}^{C}$ via mixed constructions based on two generalized topologies $\mu _{1}$ and $\mu _{2}$ on a nonempty set $X$ and also generalized topologies called $\mu _{C}$ and $\mu _{\ast }^{C}$ for a generalized topological space $(X,\mu )$.
References:
[1] Császár, Á.: Generalized topology, generalized continuity. Acta Math. Hung. 96 (2002), 351-357. DOI 10.1023/A:1019713018007 | MR 1922680 | Zbl 1006.54003
[2] Császár, Á.: Separation axioms for generalized topologies. Acta Math. Hung. 104 (2004), 63-69. DOI 10.1023/B:AMHU.0000034362.97008.c6 | MR 2069962 | Zbl 1059.54003
[3] Császár, Á.: Generalized open sets in generalized topologies. Acta Math. Hung. 106 (2005), 53-66. DOI 10.1007/s10474-005-0005-5 | MR 2127051 | Zbl 1076.54500
[4] Császár, Á.: Mixed constructions for generalized topologies. Acta Math. Hung. 122 (2009), 153-159. DOI 10.1007/s10474-008-8002-0 | MR 2487467 | Zbl 1199.54003
[5] Ekici, E., Roy, B.: New generalized topologies on generalized topological spaces due to Császár. Acta Math. Hung. 132 (2011), 117-124. DOI 10.1007/s10474-010-0050-6 | MR 2805482 | Zbl 1240.54006
[6] Min, W. K.: Some results on generalized topological spaces and generalized systems. Acta Math. Hung. 108 (2005), 171-181. DOI 10.1007/s10474-005-0218-7 | MR 2155250 | Zbl 1082.54504
[7] Devi, V. Renuka, Sivaraj, D.: On $\delta $-sets in $\gamma $-spaces. Filomat 22 (2008), 97-106. MR 2482654
[8] Száz, Á.: Minimal structures, generalized topologies, and ascending systems should not be studied without generalized uniformities. Filomat 21 (2007), 87-97. DOI 10.2298/FIL0701087S | MR 2311042 | Zbl 1199.54164
Partner of
EuDML logo