Previous |  Up |  Next

Article

Title: Further new generalized topologies via mixed constructions due to Császár (English)
Author: Ekici, Erdal
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 140
Issue: 1
Year: 2015
Pages: 1-9
Summary lang: English
.
Category: math
.
Summary: The theory of generalized topologies was introduced by Á. Császár (2002). In the literature, some authors have introduced and studied generalized topologies and some generalized topologies via generalized topological spaces due to Á. Császár. Also, the notions of mixed constructions based on two generalized topologies were introduced and investigated by Á. Császár (2009). The main aim of this paper is to introduce and study further new generalized topologies called $\mu _{12}^{C}$ via mixed constructions based on two generalized topologies $\mu _{1}$ and $\mu _{2}$ on a nonempty set $X$ and also generalized topologies called $\mu _{C}$ and $\mu _{\ast }^{C}$ for a generalized topological space $(X,\mu )$. (English)
Keyword: mixed construction
Keyword: generalized topology
Keyword: generalized topological space
Keyword: weak generalized topology
Keyword: countable subcover
Keyword: $\mu _{12}^{C}$-open set
Keyword: $\mu _{C}$-open set
Keyword: $\mu _{\ast }^{C}$-open set
Keyword: countable set
MSC: 54A05
idZBL: Zbl 06433694
idMR: MR3324415
DOI: 10.21136/MB.2015.144173
.
Date available: 2015-03-09T17:35:54Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144173
.
Reference: [1] Császár, Á.: Generalized topology, generalized continuity.Acta Math. Hung. 96 (2002), 351-357. Zbl 1006.54003, MR 1922680, 10.1023/A:1019713018007
Reference: [2] Császár, Á.: Separation axioms for generalized topologies.Acta Math. Hung. 104 (2004), 63-69. Zbl 1059.54003, MR 2069962, 10.1023/B:AMHU.0000034362.97008.c6
Reference: [3] Császár, Á.: Generalized open sets in generalized topologies.Acta Math. Hung. 106 (2005), 53-66. Zbl 1076.54500, MR 2127051, 10.1007/s10474-005-0005-5
Reference: [4] Császár, Á.: Mixed constructions for generalized topologies.Acta Math. Hung. 122 (2009), 153-159. Zbl 1199.54003, MR 2487467, 10.1007/s10474-008-8002-0
Reference: [5] Ekici, E., Roy, B.: New generalized topologies on generalized topological spaces due to Császár.Acta Math. Hung. 132 (2011), 117-124. Zbl 1240.54006, MR 2805482, 10.1007/s10474-010-0050-6
Reference: [6] Min, W. K.: Some results on generalized topological spaces and generalized systems.Acta Math. Hung. 108 (2005), 171-181. Zbl 1082.54504, MR 2155250, 10.1007/s10474-005-0218-7
Reference: [7] Devi, V. Renuka, Sivaraj, D.: On $\delta $-sets in $\gamma $-spaces.Filomat 22 (2008), 97-106. MR 2482654
Reference: [8] Száz, Á.: Minimal structures, generalized topologies, and ascending systems should not be studied without generalized uniformities.Filomat 21 (2007), 87-97. Zbl 1199.54164, MR 2311042, 10.2298/FIL0701087S
.

Files

Files Size Format View
MathBohem_140-2015-1_1.pdf 225.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo