Previous |  Up |  Next

Article

Title: Very weak solutions of the stationary Stokes equations in unbounded domains of half space type (English)
Author: Farwig, Reinhard
Author: Sauer, Jonas
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 140
Issue: 1
Year: 2015
Pages: 81-109
Summary lang: English
.
Category: math
.
Summary: We consider the theory of very weak solutions of the stationary Stokes system with nonhomogeneous boundary data and divergence in domains of half space type, such as $\mathbb R^n_+$, bent half spaces whose boundary can be written as the graph of a Lipschitz function, perturbed half spaces as local but possibly large perturbations of $\mathbb R^n_+$, and in aperture domains. The proofs are based on duality arguments and corresponding results for strong solutions in these domains, which have to be constructed in homogeneous Sobolev spaces. In addition to very weak solutions we also construct corresponding pressure functions in negative homogeneous Sobolev spaces. (English)
Keyword: Stokes equation
Keyword: very weak solution
Keyword: strong solution
Keyword: domain of half space type
MSC: 35D30
MSC: 35J65
MSC: 35Q30
MSC: 35Q35
MSC: 76D05
idZBL: Zbl 06433700
idMR: MR3324421
DOI: 10.21136/MB.2015.144181
.
Date available: 2015-03-09T17:44:41Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144181
.
Reference: [1] Amann, H.: Nonhomogeneous Navier-Stokes equations with integrable low-regularity data.Nonlinear Problems in Mathematical Physics and Related Topics II. In Honour of Professor O. A. Ladyzhenskaya Int. Math. Ser. (N.Y.) 2 Kluwer Academic Publishers, New York (2002), 1-28 M. S. Birman et al. Zbl 1201.76038, MR 1971987
Reference: [2] Amann, H.: On the strong solvability of the Navier-Stokes equations.J. Math. Fluid Mech. 2 (2000), 16-98. Zbl 0989.35107, MR 1755865, 10.1007/s000210050018
Reference: [3] Nezza, E. Di, Palatucci, G., Valdinoci, E.: Hitchhiker's guide to the fractional Sobolev spaces.Bull. Sci. Math. 136 (2012), 521-573. Zbl 1252.46023, MR 2944369, 10.1016/j.bulsci.2011.12.004
Reference: [4] Farwig, R.: Note on the flux condition and pressure drop in the resolvent problem of the Stokes system.Manuscr. Math. 89 (1996), 139-158. Zbl 0847.35102, MR 1371993, 10.1007/BF02567510
Reference: [5] Farwig, R., Galdi, G. P., Sohr, H.: A new class of weak solutions of the Navier-Stokes equations with nonhomogeneous data.J. Math. Fluid Mech. 8 (2006), 423-444. Zbl 1104.35032, MR 2258419, 10.1007/s00021-005-0182-6
Reference: [6] Farwig, R., Galdi, G. P., Sohr, H.: Very weak solutions and large uniqueness classes of stationary Navier-Stokes equations in bounded domains of {${\mathbb R}^2$}.J. Differ. Equations 227 (2006), 564-580. MR 2237679, 10.1016/j.jde.2005.10.009
Reference: [7] Farwig, R., Galdi, G. P., Sohr, H.: Very weak solutions of stationary and instationary Navier-Stokes equations with nonhomogeneous data.Nonlinear Elliptic and Parabolic Problems. A Special Tribute to the Work of Herbert Amann, Zürich, Switzerland, 2004 Progr. Nonlinear Differential Equations Appl. 64 Birkhäuser, Basel (2005), 113-136 M. Chipot et al. Zbl 1246.35148, MR 2185213
Reference: [8] Farwig, R., Kozono, H., Sohr, H.: Very weak solutions of the Navier-Stokes equations in exterior domains with nonhomogeneous data.J. Math. Soc. Japan 59 (2007), 127-150. Zbl 1107.76022, MR 2302666, 10.2969/jmsj/1180135504
Reference: [9] Farwig, R., Kozono, H., Sohr, H.: Very weak, weak and strong solutions to the instationary Navier-Stokes system.Topics on Partial Differential Equations Jindřich Nečas Cent. Math. Model. Lect. Notes 2 Matfyzpress, Praha (2007), 1-54 P. Kaplický et al. MR 2856664
Reference: [10] Farwig, R., Sohr, H.: Helmholtz decomposition and Stokes resolvent system for aperture domains in {$L^q$}-spaces.Analysis 16 (1996), 1-26. MR 1384351, 10.1524/anly.1996.16.1.1
Reference: [11] Farwig, R., Sohr, H.: Generalized resolvent estimates for the Stokes system in bounded and unbounded domains.J. Math. Soc. Japan 46 (1994), 607-643. Zbl 0819.35109, MR 1291109, 10.2969/jmsj/04640607
Reference: [12] Fichera, G.: The trace operator. Sobolev and Ehrling lemmas.Linear Elliptic Differential Systems and Eigenvalue Problems Lecture Notes in Mathematics 8 Springer, Berlin (1965), 24-29.
Reference: [13] Focardi, M.: Aperiodic fractional obstacle problems.Adv. Math. 225 (2010), 3502-3544. Zbl 1213.49022, MR 2729014, 10.1016/j.aim.2010.06.014
Reference: [14] Franzke, M.: Die Navier-Stokes-Gleichungen in "Offnungsgebieten.PhD thesis Shaker, Aachen German (2000).
Reference: [15] Galdi, G. P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I: Linearized Steady Problems.Springer Tracts in Natural Philosophy 38 Springer, New York (1994). Zbl 0949.35004, MR 1284205
Reference: [16] Galdi, G. P., Simader, C. G., Sohr, H.: A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in {$W^{-1/q,q}$}.Math. Ann. 331 (2005), 41-74. Zbl 1064.35133, MR 2107439, 10.1007/s00208-004-0573-7
Reference: [17] Kudrjavcev, L. D.: An imbedding theorem for a class of functions defined in the whole space or in the half-space. I.Transl., Ser. 2, Am. Math. Soc. 74 (1968), 199-225 translation from Mat. Sb., N. Ser. 69 (1966), 616-639 Russian. MR 0206704
Reference: [18] Kudrjavcev, L. D.: Imbedding theorems for classes of functions defined in the whole space or in the half-space. {II}.Transl., Ser. 2, Am. Math. Soc. 74 (1968), 227-260 translation from Mat. Sb., N. Ser. 70 3-35 (1966), Russian. MR 0206705
Reference: [19] Riechwald, P. F.: Interpolation of sum and intersection spaces of {$L^q$}-type and applications to the Stokes problem in general unbounded domains.Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 58 (2012), 167-181. Zbl 1307.46012, MR 2915345, 10.1007/s11565-011-0140-6
Reference: [20] Riechwald, P. F.: Very Weak Solutions to the Navier-Stokes Equations in General Unbounded Domains.PhD thesis TU Darmstadt, Darmstadt; Fachbereich Mathematik (Diss.), München (2011). Zbl 1252.35005
Reference: [21] Schumacher, K.: Very weak solutions to the stationary Stokes and Stokes resolvent problem in weighted function spaces.Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 54 (2008), 123-144. Zbl 1179.35225, MR 2403378, 10.1007/s11565-008-0038-0
Reference: [22] Schumacher, K.: The Navier-Stokes Equations with Low-Regularity Data in Weighted Function Spaces.PhD thesis TU Darmstadt, Fachbereich Mathematik (Diss.), Darmstadt (2007). Zbl 1134.35088
Reference: [23] Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis.Studies in Mathematics and Its Applications 2 North-Holland Publishing, Amsterdam (1977). Zbl 0383.35057, MR 0769654
.

Files

Files Size Format View
MathBohem_140-2015-1_7.pdf 405.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo