Previous |  Up |  Next

Article

Title: Several refinements and counterparts of Radon's inequality (English)
Author: Raţiu, Augusta
Author: Minculete, Nicuşor
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 140
Issue: 1
Year: 2015
Pages: 71-80
Summary lang: English
.
Category: math
.
Summary: We establish that the inequality of Radon is a particular case of Jensen's inequality. Starting from several refinements and counterparts of Jensen's inequality by Dragomir and Ionescu, we obtain a counterpart of Radon's inequality. In this way, using a result of Simić we find another counterpart of Radon's inequality. We obtain several applications using Mortici's inequality to improve Hölder's inequality and Liapunov's inequality. To determine the best bounds for some inequalities, we used Matlab program for different cases. (English)
Keyword: Radon's inequality
Keyword: Jensen's inequality
Keyword: Hölder's inequality
Keyword: Liapunov's inequality
MSC: 26D15
idZBL: Zbl 06433699
idMR: MR3324420
DOI: 10.21136/MB.2015.144180
.
Date available: 2015-03-09T17:42:32Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144180
.
Reference: [1] Agarwal, R. P., Dragomir, S. S.: A survey of Jensen type inequalities for functions of selfadjoint operators in Hilbert spaces.Comput. Math. Appl. 59 (2010), 3785-3812 Corrigendum Comput. Math. Appl. 61 (2011), 2931. Zbl 1221.26023, MR 2651854, 10.1016/j.camwa.2010.04.014
Reference: [2] Bergström, H.: A triangle-inequality for matrices.Den 11te Skandinaviske Matematikerkongress, Trondheim, 1949 Johan Grundt Tanums Forlag, Oslo (1952), 264-267. Zbl 0049.29501, MR 0053064
Reference: [3] Bullen, P. S.: Handbook of Means and Their Inequalities.Mathematics and Its Applications 560 Kluwer Academic Publishers, Dordrecht (2003). Zbl 1035.26024, MR 2024343
Reference: [4] Ciurdariu, L.: On Bergström inequality for commuting Gramian normal operators.J. Math. Inequal. 4 (2010), 505-516. Zbl 1214.47024, MR 2777267, 10.7153/jmi-04-45
Reference: [5] Dragomir, S. S.: A converse result for Jensen's discrete inequality via Grüss' inequality and applications in information theory.An. Univ. Oradea, Fasc. Mat. 7 (1999/2000), 178-189. MR 1774897
Reference: [6] Dragomir, S. S., Ionescu, N. M.: Some converse of Jensen's inequality and applications.Rev. Anal. Numér. Théor. Approx. 23 (1994), 71-78. Zbl 0836.26009, MR 1325895
Reference: [7] Furuichi, S., Minculete, N., Mitroi, F.-C.: Some inequalities on generalized entropies.J. Inequal. Appl. (electronic only) 2012 (2012), Article No. 2012:226, 16 pages. Zbl 1279.26046, MR 3016021
Reference: [8] Gavrea, B.: On an inequality for convex functions.Gen. Math. 19 (2011), 37-40. Zbl 1265.26070, MR 2879075
Reference: [9] Jiang, S.-J., Pang, L.-P., Shen, J.: Existence of solutions of generalized vector variational-type inequalities with set-valued mappings.Comput. Math. Appl. 59 (2010), 1453-1461. Zbl 1189.49009, MR 2591935, 10.1016/j.camwa.2009.11.010
Reference: [10] Mărghidanu, D.: Generalizations and refinements for Bergström and Radon's inequalities.J. Sci. Arts 8 (2008), 57-62. Zbl 1194.26032
Reference: [11] Mărghidanu, D., Díaz-Barrero, J. L., Rădelescu, S.: New refinements of some classical inequalities.Math. Inequal. Appl. 12 (2009), 513-518. Zbl 1178.26024, MR 2540974
Reference: [12] Mortici, C.: A new refinement of the Radon inequality.Math. Commun. 16 (2011), 319-324. Zbl 1244.26046, MR 2900757
Reference: [13] Nhan, N. D. V., Duc, D. T., Tuan, V. K.: Weighted norm inequalities for a nonlinear transform.Comput. Math. Appl. 61 (2011), 832-839. Zbl 1217.44001, MR 2770487, 10.1016/j.camwa.2010.12.031
Reference: [14] Niculescu, C., Persson, L.-E.: Convex Functions and Their Applications. A Contemporary Approach.CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC 23 Springer, New York (2006). Zbl 1100.26002, MR 2178902
Reference: [15] Pečarić, J., Perić, J.: Remarks on the paper ``Jensen's inequality and new entropy bounds'' of S. Simić.J. Math. Inequal. 6 (2012), 631-636. Zbl 1257.26024, MR 3053041, 10.7153/jmi-06-61
Reference: [16] Pop, O. T.: About Bergström's inequality.J. Math. Inequal. 3 (2009), 237-242. Zbl 1177.26047, MR 2542302, 10.7153/jmi-03-24
Reference: [17] Qiang, H., Hu, Z.: Generalizations of Hölder's and some related inequalities.Comput. Math. Appl. 61 (2011), 392-396. Zbl 1211.26021, MR 2754147, 10.1016/j.camwa.2010.11.015
Reference: [18] Radon, J.: Theorie und Anwendungen der absolut additiven Mengenfunktionen.Wien. Ber. 122 German (1913), 1295-1438.
Reference: [19] Simic, S.: Jensen's inequality and new entropy bounds.Appl. Math. Lett. 22 (2009), 1262-1265. Zbl 1173.26308, MR 2532551, 10.1016/j.aml.2009.01.040
.

Files

Files Size Format View
MathBohem_140-2015-1_6.pdf 233.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo