Previous |  Up |  Next

Article

Title: A characterization of the meager ideal (English)
Author: Zakrzewski, Piotr
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 1
Year: 2015
Pages: 45-50
Summary lang: English
.
Category: math
.
Summary: We give a classical proof of the theorem stating that the $\sigma $-ideal of meager sets is the unique $\sigma $-ideal on a Polish group, generated by closed sets which is invariant under translations and ergodic. (English)
Keyword: Polish group
Keyword: $\sigma $-ideal
Keyword: meager sets
MSC: 03E15
MSC: 54H05
idZBL: Zbl 06433804
idMR: MR3311576
DOI: 10.14712/1213-7243.015.104
.
Date available: 2015-03-10T17:34:16Z
Last updated: 2017-04-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144187
.
Reference: [1] Balcerzak M., Rogowska D.: Making some ideals meager on sets of size of the continuum.Topology Proc. 21 (1996), 1–13. Zbl 0888.54028, MR 1489187
Reference: [2] Kechris A.S.: Classical Descriptive Set Theory.Graduate Texts in Mathematics, 156, Springer, New York, 1995. Zbl 0819.04002, MR 1321597
Reference: [3] Kechris A.S., Solecki S.: Approximation of analytic by Borel sets and definable countable chain conditions.Israel J. Math. 89 (1995), 343–356. Zbl 0827.54023, MR 1324469, 10.1007/BF02808208
Reference: [4] Recław I., Zakrzewski P.: Fubini properties of ideals.Real Anal. Exchange 25 (1999/00), no. 2, 565–578. Zbl 1016.03050, MR 1778511
Reference: [5] Zapletal J.: Forcing with ideals generated by closed sets.Comment. Math. Univ. Carolin. 43 (2002), no. 1, 181–188. Zbl 1069.03037, MR 1903318
Reference: [6] Zapletal J.: Descriptive Set Theory and Definable Forcing.Mem. Amer. Math. Soc. 167 (2004), no. 793. Zbl 1037.03042, MR 2023448
Reference: [7] Zapletal J.: Forcing Idealized.Cambridge Tracts in Mathematics, 174, Cambridge University Press, Cambridge, 2008. Zbl 1140.03030, MR 2391923
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_56-2015-1_4.pdf 195.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo