Previous |  Up |  Next

Article

Title: Existence of nonnegative periodic solutions in neutral integro-differential equations with functional delay (English)
Author: Soulahia, Imene
Author: Ardjouni, Abdelouaheb
Author: Djoudi, Ahcene
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 1
Year: 2015
Pages: 23-44
Summary lang: English
.
Category: math
.
Summary: The fixed point theorem of Krasnoselskii and the concept of large contractions are employed to show the existence of a periodic solution of a nonlinear integro-differential equation with variable delay \begin{equation*} x'(t)= -\int_{t-\tau (t)}^{t}a(t,s) g(x(s))\,ds + \frac{d}{dt}Q (t,x(t-\tau (t)))+ G(t,x(t),x(t-\tau (t))). \end{equation*} We transform this equation and then invert it to obtain a sum of two mappings one of which is completely continuous and the other is a large contraction. We choose suitable conditions for $\tau $, $g$, $a$, $Q$ and $G$ to show that this sum of mappings fits into the framework of a modification of Krasnoselskii's theorem so that existence of nonnegative T-periodic solutions is concluded. (English)
Keyword: Krasnoselskii's fixed points
Keyword: periodic solution
Keyword: large contraction
MSC: 34K20
MSC: 34K30
MSC: 34K40
idZBL: Zbl 06433803
idMR: MR3311575
DOI: 10.14712/1213-7243.015.103
.
Date available: 2015-03-10T17:33:26Z
Last updated: 2017-04-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144186
.
Reference: [1] Adivar M., Islam M.N., Raffoul Y.N.: Separate contraction and existence of periodic solution in totally nonlinear delay differential equations.Hacet. J. Math. Stat. 41 (2012) no. 1, 1–13. MR 2976906
Reference: [2] Ardjouni A., Djoudi A.: Existence of positive periodic solutions for two types of second-order nonlinear neutral differential equations with variable delay.Proyecciones 32 (2013), no. 4, 377–391. Zbl 1293.34085, MR 3145042, 10.4067/S0716-09172013000400006
Reference: [3] Ardjouni A., Djoudi A.: Existence of periodic solutions in totally nonlinear neutral dynamic equations with variable delay on a time scale.Mathematics in engineering, science and aerospace MESA, Vol. 4, No. 3, pp. 305–318, 2013. CSP - Cambridge, UK; I&S - Florida, USA, 2013. Zbl 1297.34080
Reference: [4] Ardjouni A., Djoudi A.: Existence of positive periodic solutions for two kinds of nonlinear neutral differential equations with variable delay.Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 20 (2013), 357–366. Zbl 1268.34127, MR 3098458
Reference: [5] Ardjouni A., Djoudi A.: Existence of positive periodic solutions for nonlinear neutral dynamic equations with variable delay on a time scale.Malaya J. Matematik 1 (2013), no. 2, 60–67.
Reference: [6] Ardjouni A., Djoudi A.: Existence and positivity of solutions for a totally nonlinear neutral periodic differential equation.Miskolc Math. Notes 14 (2013), no. 3, 757–768. Zbl 1299.34230, MR 3153963
Reference: [7] Ardjouni A., Djoudi A.: Existence of positive periodic solutions for a second-order nonlinear neutral differential equation with variable delay.Adv. Nonlinear Anal. 2 (2013), no. 2, 151–161, DOI 10.1515/anona-2012-0024. Zbl 1278.34077, MR 3055532, 10.1515/anona-2012-0024
Reference: [8] Ardjouni A., Djoudi A.: Existence of periodic solutions for a second order nonlinear neutral differential equation with functional delay.Electronic J. Qual. Theory Differ. Equ. 2012, no. 31, 1–9. MR 2904111
Reference: [9] Ardjouni A., Djoudi A.: Existence of periodic solutions for totally nonlinear neutral differential equations with variable delay.Sarajevo J. Math. 8 (2012), no. 1, 107–117. Zbl 1260.34134, MR 2977530
Reference: [10] Ardjouni A., Djoudi A.: Existence of positive periodic solutions for a nonlinear neutral differential equation with variable delay.Appl. Math. E-Notes 12 (2012), 94–101. Zbl 1254.34098, MR 2988223
Reference: [11] Ardjouni A., Djoudi A.: Periodic solution in totally nonlinear dynamic equations with functional delay on a time scale.Rend. Semin. Mat. Univ. Politec. Torino 68 (2010), no. 4, 349–359. MR 2815207
Reference: [12] Becker L.C., Burton T.A.: Stability, fixed points and inverse of delays.Proc. Roy. Soc. Edinburgh Set. A 136 (2006), 245–275. MR 2218152
Reference: [13] Burton T.A.: Liapunov functionals, fixed points and stability by Krasnoselskii's theorem.Nonlinear Stud. 9 (2002), no. 2, 181–190. Zbl 1084.47522, MR 1898587
Reference: [14] Burton T.A.: Stability by Fixed Point Theory for Functional Differential Equations.Dover Publications, New York, 2006. Zbl 1160.34001, MR 2281958
Reference: [15] Burton T.A.: A fixed point theorem of Krasnoselskii.Appl. Math. Lett. 11 (1998), 85–88. Zbl 1127.47318, MR 1490385, 10.1016/S0893-9659(97)00138-9
Reference: [16] Burton T.A.: Stability and Periodic Solutions of Ordinary and Functional Differential Equations.Academic Press, NY, 1985. Zbl 1209.34001, MR 0837654
Reference: [17] Chen F.: Positive periodic solutions of neutral Lotka-Volterra system with feedback control.Appl. Math. Comput. 162 (2005), no. 3, 1279–1302. Zbl 1125.93031, MR 2113969, 10.1016/j.amc.2004.03.009
Reference: [18] Deham H., Djoudi A.: Periodic solutions for nonlinear differential equation with functional delay.Georgian Math. J. 15 (2008), no. 4, 635–642. Zbl 1171.47061, MR 2494962
Reference: [19] Deham H., Djoudi A.: Existence of periodic solutions for neutral nonlinear differential equations with variable delay.Electron. J. Differential Equations 2010, no. 127, 1–8. Zbl 1203.34110, MR 2685037
Reference: [20] Hale J.: Theory of Functional Differential Equations.second edition, Applied Mathematical Sciences, 3, Springer, New York-Heidelberg, 1977. Zbl 1092.34500, MR 0508721, 10.1007/978-1-4612-9892-2_3
Reference: [21] Hale J.K., Verduyn Lunel S.M.: Introduction to Functional Differential Equations.Applied Mathematical Sciences, 99, Springer, New York, 1993. Zbl 0787.34002, MR 1243878, 10.1007/978-1-4612-4342-7_3
Reference: [22] Fan M., Wang K., Wong P.J.Y., Agarwal R.P.: Periodicity and stability in periodic n-species Lotka-Volterra competition system with feedback controls and deviating arguments.Acta Math. Sin. (Engl. Ser.) 19 (2003), no. 4, 801–822. Zbl 1047.34080, MR 2023372, 10.1007/s10114-003-0311-1
Reference: [23] Smart D.R.: Fixed Point Theorems.Cambridge Tracts in Mathematics, 66, Cambridge University Press, London-New York, 1974. Zbl 0427.47036, MR 0467717
Reference: [24] Wang Y., Lian H., Ge W.: Periodic solutions for a second order nonlinear functional differential equation.Appl. Math. Lett. 20 (2007), 110–115. MR 2273618, 10.1016/j.aml.2006.02.028
Reference: [25] Yankson E.: Existence and positivity of solutions for a nonlinear periodic differential equation.Arch. Math. (Brno) 48 (2012), no. 4, 261–270. Zbl 1274.34230, MR 3007609, 10.5817/AM2012-4-261
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_56-2015-1_3.pdf 293.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo