Previous |  Up |  Next

Article

Title: On the metric reflection of a pseudometric space in ZF (English)
Author: Herrlich, Horst
Author: Keremedis, Kyriakos
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 1
Year: 2015
Pages: 77-88
Summary lang: English
.
Category: math
.
Summary: We show: (i) The countable axiom of choice $\mathbf{CAC}$ is equivalent to each one of the statements: (a) a pseudometric space is sequentially compact iff its metric reflection is sequentially compact, (b) a pseudometric space is complete iff its metric reflection is complete. (ii) The countable multiple choice axiom $\mathbf{CMC}$ is equivalent to the statement: (a) a pseudometric space is Weierstrass-compact iff its metric reflection is Weierstrass-compact. (iii) The axiom of choice $\mathbf{AC}$ is equivalent to each one of the statements: (a) a pseudometric space is Alexandroff-Urysohn compact iff its metric reflection is Alexandroff-Urysohn compact, (b) a pseudometric space $\mathbf{X}$ is Alexandroff-Urysohn compact iff its metric reflection is ultrafilter compact. (iv) We show that the statement “The preimage of an ultrafilter extends to an ultrafilter” is not a theorem of $\mathbf{ZFA}$. (English)
Keyword: weak axioms of choice
Keyword: pseudometric spaces
Keyword: metric reflections
Keyword: complete metric and pseudometric spaces
Keyword: limit point compact
Keyword: Alexandroff-Urysohn compact
Keyword: ultrafilter compact
Keyword: sequentially compact
MSC: 54E35
MSC: 54E45
idZBL: Zbl 06433807
idMR: MR3311579
DOI: 10.14712/1213-7243.015.107
.
Date available: 2015-03-10T17:38:14Z
Last updated: 2017-04-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144190
.
Reference: [1] Bentley H.L., Herrlich H.: Countable choice and pseudometric spaces.Topology Appl. 85 (1998), 153–164. Zbl 0922.03068, MR 1617460, 10.1016/S0166-8641(97)00138-7
Reference: [2] Blass A.: The model of set theory generated by countably many generic reals.J. Symbolic Logic 46 (1981), 732–752. Zbl 0482.03022, MR 0641487, 10.2307/2273223
Reference: [3] Hall E., Keremedis K., Tachtsis E.: The existence of free ultrafilters on $\omega $ does not imply the extension of filters on $\omega $ to ultrafilters.Math. Logic Quart. 59 (2013), 158–267. MR 3100753, 10.1002/malq.201100092
Reference: [4] Herrlich H.: Axiom of Choice.Lecture Notes in Mathematics, 1876, Springer, New York, 2006. Zbl 1102.03049, MR 2243715
Reference: [5] Howard P., Keremedis K., Rubin H., Stanley A.: Compactness in countable Tychonoff products and choice.Math. Logic Quart. 46 (2000), 3–16. Zbl 0942.54006, MR 1736645, 10.1002/(SICI)1521-3870(200001)46:1<3::AID-MALQ3>3.0.CO;2-E
Reference: [6] Howard P., Rubin J.E.: Consequences of the axiom of choice.Math. Surveys and Monographs, 59, American Mathematical Society, Providence, R.I., 1998. Zbl 0947.03001, MR 1637107, 10.1090/surv/059
Reference: [7] Keremedis K.: On the relative strength of forms of compactness of metric spaces and their countable productivity in $\mathbf{ZF}$.Topology Appl. 159 (2012), 3396–3403. MR 2964853, 10.1016/j.topol.2012.08.003
Reference: [8] Munkres J.R.: Topology.Prentice-Hall, New Jersey, 1975. Zbl 0951.54001, MR 0464128
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_56-2015-1_7.pdf 246.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo