Previous |  Up |  Next

Article

Title: The sup = max problem for the extent and the Lindelöf degree of generalized metric spaces, II (English)
Author: Hirata, Yasushi
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 1
Year: 2015
Pages: 89-103
Summary lang: English
.
Category: math
.
Summary: In [The sup = max problem for the extent of generalized metric spaces, Comment. Math. Univ. Carolin. The special issue devoted to Čech 54 (2013), no. 2, 245–257], the author and Yajima discussed the sup = max problem for the extent and the Lindelöf degree of generalized metric spaces: (strict) $p$-spaces, (strong) $\Sigma $-spaces and semi-stratifiable spaces. In this paper, the sup = max problem for the Lindelöf degree of spaces having $G_\delta $-diagonals and for the extent of spaces having point-countable bases is considered. (English)
Keyword: extent
Keyword: Lindelöf degree
Keyword: $G_\delta $-diagonal
Keyword: point-countable base
MSC: 03E10
MSC: 54A25
MSC: 54D20
idZBL: Zbl 06433808
idMR: MR3311580
DOI: 10.14712/1213-7243.015.108
.
Date available: 2015-03-10T17:39:11Z
Last updated: 2017-04-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144191
.
Reference: [1] Aull C.E.: A generalization of a theorem of Aquaro.Bull. Austral. Math. Soc. 9 (1973), 105–108. Zbl 0255.54015, MR 0372817, 10.1017/S0004972700042933
Reference: [2] Creed G.D.: Concerning semi-stratifiable spaces.Pacific J. Math. 32 (1970), 47–54. MR 0254799, 10.2140/pjm.1970.32.47
Reference: [3] Gruenhage G.: Generalized metric spaces.Handbook of Set-theoretic Topology (K. Kunen and J.E. Vaughan, eds), North-Holland, Amsterdam, 1984, pp. 423–501. Zbl 0794.54034, MR 0776629
Reference: [4] Hajnal A., Juhász I.: Discrete subspaces of topological spaces II.Indag. Math. 31 (1969), 18–30. Zbl 0169.53901, MR 0264585, 10.1016/1385-7258(69)90022-5
Reference: [5] Hajnal A., Juhász I.: Some remarks on a property of topological cardinal functions.Acta. Math. Acad. Sci. Hungar. 20 (1969), 25–37. Zbl 0184.26401, MR 0242103, 10.1007/BF01894566
Reference: [6] Hirata Y., Yajima Y.: The sup = max problem for the extent of generalized metric spaces.Comment. Math. Univ. Carolin. (The special issue devoted to Čech) 54 (2013), no. 2, 245–257. Zbl 1289.54024, MR 3067707
Reference: [7] Hodel R.E.: Cardinal functions I.Handbook of Set-theoretic Topology (K. Kunen and J.E. Vaughan, eds), North-Holland, Amsterdam, 1984, pp. 1–61. Zbl 0559.54003, MR 0776620
Reference: [8] Kunen K.: Luzin spaces.Topology Proc. 1 (1976), 191–199. Zbl 0389.54004, MR 0450063
Reference: [9] Kunen K.: Set Theory. An Introduction to Independence Proofs.North-Holland, Amsterdam, 1980. Zbl 0534.03026, MR 0597342
Reference: [10] Roitman J.: The spread of regular spaces.Gen. Topology Appl. 8 (1978), 85–91. Zbl 0398.54001, MR 0493957, 10.1016/0016-660X(78)90020-X
Reference: [11] Yajima Y.: private communication..
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_56-2015-1_8.pdf 285.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo