Title:
|
Todorcevic orderings as examples of ccc forcings without adding random reals (English) |
Author:
|
Yorioka, Teruyuki |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
56 |
Issue:
|
1 |
Year:
|
2015 |
Pages:
|
125-132 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In [Two examples of Borel partially ordered sets with the countable chain condition, Proc. Amer. Math. Soc. 112 (1991), no. 4, 1125–1128], Todorcevic introduced a ccc forcing which is Borel definable in a separable metric space. In [On Todorcevic orderings, Fund. Math., to appear], Balcar, Pazák and Thümmel applied it to more general topological spaces and called such forcings Todorcevic orderings. There they analyze Todorcevic orderings quite deeply. A significant remark is that Thümmel solved the problem of Horn and Tarski by use of Todorcevic ordering [The problem of Horn and Tarski, Proc. Amer. Math. Soc. 142 (2014), no. 6, 1997–2000]. This paper supplements the analysis of Todorcevic orderings due to Balcar, Pazák and Thümmel in [On Todorcevic orderings, Fund. Math., to appear]. More precisely, it is proved that Todorcevic orderings add no random reals whenever they have the countable chain condition. (English) |
Keyword:
|
Todorcevic orderings |
Keyword:
|
random reals |
MSC:
|
03E17 |
MSC:
|
03E35 |
idZBL:
|
Zbl 06433811 |
idMR:
|
MR3311583 |
DOI:
|
10.14712/1213-7243.015.111 |
. |
Date available:
|
2015-03-10T17:42:55Z |
Last updated:
|
2017-04-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144194 |
. |
Reference:
|
[1] Balcar B., Jech T.: Weak distributivity, a problem of von Neumann and the mystery of measurability.Bull. Symbolic Logic 12 (2006), no. 2, 241–266. Zbl 1120.03028, MR 2223923, 10.2178/bsl/1146620061 |
Reference:
|
[2] Balcar B., Pazák T., Thümmel E.: On Todorcevic orderings.Fund. Math.(to appear). MR 3294608 |
Reference:
|
[3] Bartoszyński T., Judah H.: Set Theory. On the Structure of the Real Line.A K Peters, Ltd., Wellesley, MA, 1995. MR 1350295 |
Reference:
|
[4] Dow A., Steprāns J.: Countable Fréchet $\alpha_1$-spaces may be first countable.Arch. Math. Logic 32 (1992), no. 1, 33–50. MR 1186465, 10.1007/BF01270393 |
Reference:
|
[5] Horn A., Tarski A.: Measures in Boolean algebras.Trans. Amer. Math. Soc. 64 (1948), 467–497. Zbl 0035.03001, MR 0028922, 10.1090/S0002-9947-1948-0028922-8 |
Reference:
|
[6] Judah H., Repický M.: No random reals in countable support iterations.Israel J. Math. 92 (1995), no. 1–3, 349–359. Zbl 0838.03039, MR 1357763, 10.1007/BF02762088 |
Reference:
|
[7] Larson P., Todorcevic S.: Katětov's problem.Trans. Amer. Math. Soc. 354 (2002), no. 5, 1783–1791. Zbl 0995.54021, MR 1881016, 10.1090/S0002-9947-01-02936-1 |
Reference:
|
[8] Osuga N., Kamo S.: Many different covering numbers of Yorioka's ideals.Arch. Math. Logic 53 (2014), no. 1–2, 43–56. MR 3151397, 10.1007/s00153-013-0354-7 |
Reference:
|
[9] Solovay R.: A model of set-theory in which every set of reals is Lebesgue measurable.Ann. of Math. (2) 92 (1970), 1–56. Zbl 0207.00905, MR 0265151, 10.2307/1970696 |
Reference:
|
[10] Talagrand M.: Maharam's problem.Ann. of Math. (2) 168 (2008), no. 3, 981–1009. Zbl 1185.28002, MR 2456888, 10.4007/annals.2008.168.981 |
Reference:
|
[11] Thümmel E.: The problem of Horn and Tarski.Proc. Amer. Math. Soc. 142 (2014), no. 6, 1997–2000. MR 3182018, 10.1090/S0002-9939-2014-11965-4 |
Reference:
|
[12] Todorcevic S.: Partition Problems in Topology.Contemporary Mathematics, 84, American Mathematical Society, Providence, Rhode Island, 1989. Zbl 0659.54001, MR 0980949, 10.1090/conm/084 |
Reference:
|
[13] Todorcevic S.: Two examples of Borel partially ordered sets with the countable chain condition.Proc. Amer. Math. Soc. 112 (1991), no. 4, 1125–1128. Zbl 0727.03030, MR 1069693, 10.2307/2048663 |
Reference:
|
[14] Todorcevic S.: A problem of von Neumann and Maharam about algebras supporting continuous submeasures.Fund. Math. 183 (2004), no. 2, 169–183. Zbl 1071.28004, MR 2127965, 10.4064/fm183-2-7 |
Reference:
|
[15] Todorcevic S.: A Borel solution to the Horn-Tarski problem.Acta Math. Hungar. 142 (2014), no. 2, 526–533. Zbl 1299.03055, MR 3165500, 10.1007/s10474-013-0362-4 |
Reference:
|
[16] Velickovic B.: CCC posets of perfect trees.Compos. Math. 79 (1991), no. 3, 279–294. Zbl 0735.03023, MR 1121140 |
Reference:
|
[17] Yorioka T.: Some weak fragments of Martin's axiom related to the rectangle refining property.Arch. Math. Logic 47 (2008), no. 1, 79–90. Zbl 1153.03038, MR 2410821, 10.1007/s00153-008-0075-5 |
Reference:
|
[18] Yorioka T.: The inequality $\mathfrak{b}>\aleph_1$ can be considered as an analogue of Suslin's Hypothesis.Axiomatic Set Theory and Set-theoretic Topology (Kyoto 2007), S\=urikaisekikenky\=usho K\=oky\=uroku No. 1595 (2008), 84–88. |
Reference:
|
[19] Yorioka T.: A non-implication between fragments of Martin's Axiom related to a property which comes from Aronszajn trees.Ann. Pure Appl. Logic 161 (2010), no. 4, 469–487. Zbl 1225.03065, MR 2584728, 10.1016/j.apal.2009.02.006 |
Reference:
|
[20] Yorioka T.: Uniformizing ladder system colorings and the rectangle refining property.Proc. Amer. Math. Soc. 138 (2010), no. 8, 2961–2971. Zbl 1200.03039, MR 2644907 |
Reference:
|
[21] Yorioka T.: A correction to “A non-implication between fragments of Martin's Axiom related to a property which comes from Aronszajn trees”.Ann. Pure Appl. Logic 162 (2011), 752–754. Zbl 1225.03065, MR 2794259, 10.1016/j.apal.2011.02.003 |
Reference:
|
[22] Yorioka T.: Keeping the covering number of the null ideal small.preprint, 2013. |
. |