Previous |  Up |  Next

Article

Title: Todorcevic orderings as examples of ccc forcings without adding random reals (English)
Author: Yorioka, Teruyuki
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 1
Year: 2015
Pages: 125-132
Summary lang: English
.
Category: math
.
Summary: In [Two examples of Borel partially ordered sets with the countable chain condition, Proc. Amer. Math. Soc. 112 (1991), no. 4, 1125–1128], Todorcevic introduced a ccc forcing which is Borel definable in a separable metric space. In [On Todorcevic orderings, Fund. Math., to appear], Balcar, Pazák and Thümmel applied it to more general topological spaces and called such forcings Todorcevic orderings. There they analyze Todorcevic orderings quite deeply. A significant remark is that Thümmel solved the problem of Horn and Tarski by use of Todorcevic ordering [The problem of Horn and Tarski, Proc. Amer. Math. Soc. 142 (2014), no. 6, 1997–2000]. This paper supplements the analysis of Todorcevic orderings due to Balcar, Pazák and Thümmel in [On Todorcevic orderings, Fund. Math., to appear]. More precisely, it is proved that Todorcevic orderings add no random reals whenever they have the countable chain condition. (English)
Keyword: Todorcevic orderings
Keyword: random reals
MSC: 03E17
MSC: 03E35
idZBL: Zbl 06433811
idMR: MR3311583
DOI: 10.14712/1213-7243.015.111
.
Date available: 2015-03-10T17:42:55Z
Last updated: 2017-04-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144194
.
Reference: [1] Balcar B., Jech T.: Weak distributivity, a problem of von Neumann and the mystery of measurability.Bull. Symbolic Logic 12 (2006), no. 2, 241–266. Zbl 1120.03028, MR 2223923, 10.2178/bsl/1146620061
Reference: [2] Balcar B., Pazák T., Thümmel E.: On Todorcevic orderings.Fund. Math.(to appear). MR 3294608
Reference: [3] Bartoszyński T., Judah H.: Set Theory. On the Structure of the Real Line.A K Peters, Ltd., Wellesley, MA, 1995. MR 1350295
Reference: [4] Dow A., Steprāns J.: Countable Fréchet $\alpha_1$-spaces may be first countable.Arch. Math. Logic 32 (1992), no. 1, 33–50. MR 1186465, 10.1007/BF01270393
Reference: [5] Horn A., Tarski A.: Measures in Boolean algebras.Trans. Amer. Math. Soc. 64 (1948), 467–497. Zbl 0035.03001, MR 0028922, 10.1090/S0002-9947-1948-0028922-8
Reference: [6] Judah H., Repický M.: No random reals in countable support iterations.Israel J. Math. 92 (1995), no. 1–3, 349–359. Zbl 0838.03039, MR 1357763, 10.1007/BF02762088
Reference: [7] Larson P., Todorcevic S.: Katětov's problem.Trans. Amer. Math. Soc. 354 (2002), no. 5, 1783–1791. Zbl 0995.54021, MR 1881016, 10.1090/S0002-9947-01-02936-1
Reference: [8] Osuga N., Kamo S.: Many different covering numbers of Yorioka's ideals.Arch. Math. Logic 53 (2014), no. 1–2, 43–56. MR 3151397, 10.1007/s00153-013-0354-7
Reference: [9] Solovay R.: A model of set-theory in which every set of reals is Lebesgue measurable.Ann. of Math. (2) 92 (1970), 1–56. Zbl 0207.00905, MR 0265151, 10.2307/1970696
Reference: [10] Talagrand M.: Maharam's problem.Ann. of Math. (2) 168 (2008), no. 3, 981–1009. Zbl 1185.28002, MR 2456888, 10.4007/annals.2008.168.981
Reference: [11] Thümmel E.: The problem of Horn and Tarski.Proc. Amer. Math. Soc. 142 (2014), no. 6, 1997–2000. MR 3182018, 10.1090/S0002-9939-2014-11965-4
Reference: [12] Todorcevic S.: Partition Problems in Topology.Contemporary Mathematics, 84, American Mathematical Society, Providence, Rhode Island, 1989. Zbl 0659.54001, MR 0980949, 10.1090/conm/084
Reference: [13] Todorcevic S.: Two examples of Borel partially ordered sets with the countable chain condition.Proc. Amer. Math. Soc. 112 (1991), no. 4, 1125–1128. Zbl 0727.03030, MR 1069693, 10.2307/2048663
Reference: [14] Todorcevic S.: A problem of von Neumann and Maharam about algebras supporting continuous submeasures.Fund. Math. 183 (2004), no. 2, 169–183. Zbl 1071.28004, MR 2127965, 10.4064/fm183-2-7
Reference: [15] Todorcevic S.: A Borel solution to the Horn-Tarski problem.Acta Math. Hungar. 142 (2014), no. 2, 526–533. Zbl 1299.03055, MR 3165500, 10.1007/s10474-013-0362-4
Reference: [16] Velickovic B.: CCC posets of perfect trees.Compos. Math. 79 (1991), no. 3, 279–294. Zbl 0735.03023, MR 1121140
Reference: [17] Yorioka T.: Some weak fragments of Martin's axiom related to the rectangle refining property.Arch. Math. Logic 47 (2008), no. 1, 79–90. Zbl 1153.03038, MR 2410821, 10.1007/s00153-008-0075-5
Reference: [18] Yorioka T.: The inequality $\mathfrak{b}>\aleph_1$ can be considered as an analogue of Suslin's Hypothesis.Axiomatic Set Theory and Set-theoretic Topology (Kyoto 2007), S\=urikaisekikenky\=usho K\=oky\=uroku No. 1595 (2008), 84–88.
Reference: [19] Yorioka T.: A non-implication between fragments of Martin's Axiom related to a property which comes from Aronszajn trees.Ann. Pure Appl. Logic 161 (2010), no. 4, 469–487. Zbl 1225.03065, MR 2584728, 10.1016/j.apal.2009.02.006
Reference: [20] Yorioka T.: Uniformizing ladder system colorings and the rectangle refining property.Proc. Amer. Math. Soc. 138 (2010), no. 8, 2961–2971. Zbl 1200.03039, MR 2644907
Reference: [21] Yorioka T.: A correction to “A non-implication between fragments of Martin's Axiom related to a property which comes from Aronszajn trees”.Ann. Pure Appl. Logic 162 (2011), 752–754. Zbl 1225.03065, MR 2794259, 10.1016/j.apal.2011.02.003
Reference: [22] Yorioka T.: Keeping the covering number of the null ideal small.preprint, 2013.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_56-2015-1_11.pdf 231.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo