Previous |  Up |  Next

Article

Title: Ideal independence, free sequences, and the ultrafilter number (English)
Author: Selker, Kevin
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 1
Year: 2015
Pages: 117-124
Summary lang: English
.
Category: math
.
Summary: We make use of a forcing technique for extending Boolean algebras. The same type of forcing was employed in Baumgartner J.E., Komjáth P., Boolean algebras in which every chain and antichain is countable, Fund. Math. 111 (1981), 125–133, Koszmider P., Forcing minimal extensions of Boolean algebras, Trans. Amer. Math. Soc. 351 (1999), no. 8, 3073–3117, and elsewhere. Using and modifying a lemma of Koszmider, and using CH, we obtain an atomless BA, $A$ such that $\mathfrak{f}(A) = \text{s}_{\text{mm}}(A) <\frak{u}(A)$, answering questions raised by Monk J.D., Maximal irredundance and maximal ideal independence in Boolean algebras, J. Symbolic Logic 73 (2008), no. 1, 261–275, and Monk J.D., Maximal free sequences in a Boolean algebra, Comment. Math. Univ. Carolin. 52 (2011), no. 4, 593–610. (English)
Keyword: free sequences
Keyword: Boolean algebras
Keyword: cardinal functions
Keyword: ultrafilter number
MSC: 06E05
MSC: 54A25
idZBL: Zbl 06433810
idMR: MR3311582
DOI: 10.14712/1213-7243.015.110
.
Date available: 2015-03-10T17:40:57Z
Last updated: 2017-04-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144193
.
Reference: [BK81] Baumgartner J.E., Komjáth P.: Boolean algebras in which every chain and antichain is countable.Fund. Math. 111 (1981), 125–133. Zbl 0452.03044, MR 0609428
Reference: [KMB89] Koppelberg S., Monk J.D., Bonnet R.: Handbook of Boolean Algebras.vol. 1989, North-Holland, Amsterdam, 1989.
Reference: [Kos99] Koszmider P.: Forcing minimal extensions of Boolean algebras.Trans. Amer. Math. Soc. 351 (1999), no. 8, 3073–3117. Zbl 0922.03071, MR 1467471
Reference: [Mon08] Monk J.D.: Maximal irredundance and maximal ideal independence in Boolean algebras.J. Symbolic Logic 73 (2008), no. 1, 261–275. Zbl 1141.06011, MR 2387943, 10.2178/jsl/1208358753
Reference: [Mon11] Monk J.D.: Maximal free sequences in a Boolean algebra.Comment. Math. Univ. Carolin. 52 (2011), no. 4, 593–610. Zbl 1249.06034, MR 2864001
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_56-2015-1_10.pdf 220.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo