Previous |  Up |  Next

Article

Title: A study on global stabilization of periodic orbits in discrete-time chaotic systems by using symbolic dynamics (English)
Author: Suzuki, Masayasu
Author: Sakamoto, Noboru
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 1
Year: 2015
Pages: 4-19
Summary lang: English
.
Category: math
.
Summary: In this report, a control method for the stabilization of periodic orbits for a class of one- and two-dimensional discrete-time systems that are topologically conjugate to symbolic dynamical systems is proposed and applied to a population model in an ecosystem and the Smale horseshoe map. A periodic orbit is assigned as a target by giving a sequence in which symbols have periodicity. As a consequence, it is shown that any periodic orbits can be globally stabilized by using arbitrarily small control inputs. This work is a new attempt to systematically design a control system based on symbolic dynamics in the sense that one estimates the magnitude of control inputs and analyzes the Lyapunov stability. (English)
Keyword: symbolic dynamics
Keyword: chaos control
Keyword: global stability
MSC: 37B10
MSC: 37N35
MSC: 74H65
MSC: 93D15
idZBL: Zbl 06433829
idMR: MR3333830
DOI: 10.14736/kyb-2015-1-0004
.
Date available: 2015-03-23T18:43:23Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144199
.
Reference: [1] Birkhoff, G. D.: Dynamical Systems..American Mathematical Society, New York 1927. Zbl 0992.37001, MR 0209095, 10.1002/zamm.19280080636
Reference: [2] Bollt, E. M., Dolnik, M.: Encoding information in chemical chaos by controlling symbolic dynamics..Phys. Rev. E 55 (1997), 6, 6404-6413. 10.1103/physreve.55.6404
Reference: [3] Corron, N. J., Pethel, S. D.: Experimental targeting of chaos via controlled symbolic dynamics..Phys. Lett. A 313 (2003), 192-197. MR 1995498, 10.1016/s0375-9601(03)00754-0
Reference: [4] Glenn, C. M., Hayes, S.: Targeting Regions of Chaotic Attractors Using Small Perturbation Control of Symbolic Dynamics..Army Research Laboratory Adelphi MD 1996, No. ARL-TR-903.
Reference: [5] Hadamard, J.: Les surfaces à curbures opposés et leurs lignes géodesiques..J. Math. Pure Appl. 5 (1898), 27-73.
Reference: [6] Hayes, S., Grebogi, C., Ott, E.: Communicating with chaos..Phys. Rev. Lett. 70 (1993), 20, 3031-3034. 10.1103/physrevlett.70.3031
Reference: [7] Lai, Y.-C.: Controlling chaos..Comput. Phys. 8 (1994), 1, 62-67. Zbl 1047.93522, 10.1063/1.4823262
Reference: [8] Levinson, N.: A second order differential equation with singular solutions..Ann. of Math. (2) 50 (1949), 1, 126-153. Zbl 0045.36501, MR 0030079, 10.2307/1969357
Reference: [9] Lind, D.: Multi-dimensional symbolic dynamics..In: Symbolic Dynamics ans its Applications (S. G. Williams, ed.), Proc. Symp. Appl. Math. 60 (2004), 61-80. Zbl 1070.37009, MR 2078846, 10.1090/psapm/060/2078846
Reference: [10] May, R. M.: Simple mathematical models with very complicated dynamics..Nature 261 (1976), 459-467. Zbl 0527.58025, 10.1038/261459a0
Reference: [11] Morse, M., Hedlund, G. A.: Symbolic dynamics..Amer. J. Math. 60 (1938), 815-866. Zbl 0063.04115, MR 1507944, 10.2307/2371264
Reference: [12] Moser, J.: Stable and Random Motions in Dynamical Systems..Princeton University Press, 1973. Zbl 0991.70002, MR 0442980
Reference: [13] Ott, E., Grebogi, C., Yorke, J. A.: Controlling chaos..Phys. Rev. Lett. 64 (1990), 11, 1196-1199. Zbl 0964.37502, MR 1041523, 10.1103/physrevlett.64.1196
Reference: [14] Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos..CRC Press, 1999. Zbl 0914.58021, MR 1792240
Reference: [15] Robinson, E. A., Jr.: Symbolic dynamics and tiling of ${\mathbb{R}}^d$..In: Symbolic Dynamics ans its Applications (S. G. Williams, ed.), Proc. Symp. Appl. Math. 60 (2002), 81-120. MR 2078847, 10.1090/psapm/060/2078847
Reference: [16] Smale, S.: Diffeomorphism with many periodic points..In: Differential and Combinatorial Topology (S. S. Cairns, ed.), Princeton University Press 1963, pp. 63-80. MR 0182020
Reference: [17] Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos..Springer, 1991. Zbl 1027.37002, MR 2004534, 10.1007/978-1-4757-4067-7
.

Files

Files Size Format View
Kybernetika_51-2015-1_3.pdf 478.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo