Previous |  Up |  Next

Article

Title: Tracking through singularities using sliding mode differentiators (English)
Author: Castillo-Toledo, Bernardino
Author: Di Gennaro, Stefano
Author: López-Cuevas, Armando
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 1
Year: 2015
Pages: 20-35
Summary lang: English
.
Category: math
.
Summary: In this work, an alternative solution to the tracking problem for a SISO nonlinear dynamical system exhibiting points of singularity is given. An inversion-based controller is synthesized using the Fliess generalized observability canonical form associated to the system. This form depends on the input and its derivatives. For this purpose, a robust exact differentiator is used for estimating the control derivatives signals with the aim of defining a control law depending on such control derivative estimates and on the system state variables. This control law is such that, when applied to the system, bounded tracking error near the singularities is guaranteed. (English)
Keyword: singularities
Keyword: sliding mode differentiator
Keyword: tracking
MSC: 41A30
MSC: 93B12
MSC: 93C10
idZBL: Zbl 06433830
idMR: MR3333831
DOI: 10.14736/kyb-2015-1-0020
.
Date available: 2015-03-23T18:45:10Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144200
.
Reference: [1] Becerra, H. M., López-Nicolás, G., Sagués, C.: A sliding-mode-control law for mobile robots based on epipolar visual servoing from three views..IEEE Trans. Robotics 27 (2011), 1, 175-183. 10.1109/tro.2010.2091750
Reference: [2] Benosman, M., Vey, G. Le: Stable inversion of SISO nonminimum phase linear systems through output planning: An experimental application to the one-link flexible manipulator..IEEE Trans. Control Systems Technol. 11 (2003), 4, 588-597. 10.1109/tcst.2003.813372
Reference: [3] Castillo, B.: Output tracking through singular points for a class of nonlinear SISO systems.In: Proc. First European Control Conference 1991, pp. 1496-1498.
Reference: [4] Devasia, S., Chen, D., Paden, B.: Nonlinear inversion based-output tracking..IEEE Trans. Automat. Control 41 (1996), 7, 930-942. Zbl 0859.93006, MR 1398777, 10.1109/9.508898
Reference: [5] Devasia, S.: Should model-based inverse inputs be used as feedforward under Plant uncertainty?.IEEE Trans. Automat. Control 47 (2002), 11, 1865-1871. MR 1937698, 10.1109/tac.2002.804478
Reference: [6] Fliess, M.: Generalized controller canonical form for linear and nonlinear dynamics..IEEE Trans. Automat. Control 35 (1990), 9, 994-1001. MR 1065035, 10.1109/9.58527
Reference: [7] Hauser, J., Sastry, S., Kokotovic, P.: Nonlinear control via approximate input-output linearization: The Ball and Beam example..In: Proc. 28th Conference on Decision and Control 1989, pp. 1987-1993. MR 1148727, 10.1109/cdc.1989.70513
Reference: [8] Hauser, J., Sastry, S., Kokotovic, P.: Nonlinear control via approximate input-output linearization: The Ball and Beam example..IEEE Trans. Automat. Control 35 (1992), 3, 392-398. MR 1148727, 10.1109/cdc.1989.70513
Reference: [9] Herrero, P., Jaulin, L., Vehí, J., Sainz, M. A.: Guaranteed set-point computation with application to the control of a sailboat..Int. J. Control Automat. Systems 8 (2010), 1, 1-7. 10.1007/s12555-010-0101-3
Reference: [10] Hirschorn, R. M.: Incremental sliding mode control of the Ball and Beam..IEEE Trans. Automat. Control 47 (2002), 10, 1696-1700. MR 1929943, 10.1109/tac.2002.803538
Reference: [11] Hirschorn, R., Davis, J.: Output tracking for nonlinear systems with singular points..SIAM J. Control Optim. 25 (1987), 3, 547-557. Zbl 0624.93008, MR 0885184, 10.1137/0325030
Reference: [12] Isidori, A.: Nonlinear Control System..Springer Verlag, Berlin 1989. 10.1007/978-3-662-02581-9
Reference: [13] Krener, A.: Approximate linearization by state feedback..SIAM J. Control Optim. 25 (1987), 3, 547-557. Zbl 0555.93027
Reference: [14] Lamnabhi-Lagarrigue, F., Crouch, P. E., Ighneiwa, I.: Tracking through singularities..In: New Trends in Control Theory, Lect. Notes in Control and Inform. Sci. Springer Berlin Heidelberg 122 (1989), pp. 44-53. Zbl 0718.93023, MR 1229764, 10.1007/bfb0043016
Reference: [15] Levant, A.: Robust exact differentiation via sliding mode technique..Automatica 34 (1998), 3, 379-384. Zbl 0915.93013, MR 1623077, 10.1016/s0005-1098(97)00209-4
Reference: [16] Levant, A.: Higher-order sliding modes, differentiation and output feedback control..Int. J. Control 76 (2003), 9/10, 924-945. Zbl 1049.93014, MR 1999375, 10.1080/0020717031000099029
Reference: [17] Levant, A.: Homogeneity approach to high-order sliding mode design..Automatica 41 (2005), 5, 823-830. Zbl 1093.93003, MR 2157713, 10.1016/j.automatica.2004.11.029
Reference: [18] Márton, L., Hodel, A. S., Lantos, B., Hung, J.: Underactuated robot control: Comparing LQR, subspace stabilization, and combined error metric approaches..IEEE Trans. Industr. Electron. 55 (2008), 10, 3724-3730. 10.1109/tie.2008.923285
Reference: [19] Perruquetti, W., Floquet, T.: Homogeneous finite time observer for nonlinear systems with linearizable error dynamics..In: Proc. 46th IEEE Conference on Decision and Control, New Orleans 2007, pp. 12-14. 10.1109/cdc.2007.4434702
Reference: [20] Saif, M., Chen, W., Wu, Q.: High order sliding mode observers and differentiators - application to fault diagnosis problem..In: Modern Sliding Mode Control Theory, Lect. Notes in Control and Inform. Sci. Springer, Berlin - Heidelgerg 375 (2008) pp. 321-344. Zbl 1145.93315, MR 2454142, 10.1007/978-3-540-79016-7_15
Reference: [21] Sira-Ramirez, H.: The differential algebraic approach in nonlinear dynamical feedback controlled landing maneuvers..IEEE Trans. Automat. Control 37 (1992), 4, 518-524. MR 1153118, 10.1109/9.126590
Reference: [22] Tomlin, C., Sastry, S.: Switching through singularities..Systems Control Lett. 35 (1998), 145-154. Zbl 0909.93032, MR 1749610, 10.1016/s0167-6911(98)00046-2
Reference: [23] Utkin, V., Gulden, J., Shi, J.: Sliding Modes in Electromechanical Systems..Taylor and Francis, London 1999.
Reference: [24] Yu, Z., Fan, G.: Jianqiang Yi. Indirect adaptive flight control based on nonlinear inversion..In: Proc. 2009 IEEE International Conference on Mechatronics and Automation 2009, pp. 3787-3792. 10.1109/icma.2009.5246179
.

Files

Files Size Format View
Kybernetika_51-2015-1_4.pdf 858.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo