Full entry |
PDF
(0.3 MB)
Feedback

Riemannian homogeneous manifold; Einstein manifold; weakly Einstein manifold

References:

[1] Arias-Marco, T., Kowalski, O.: **Classification of $4$-dimensional homogeneous D'Atri spaces**. Czech. Math. J. 58 (2008), 203-239. DOI 10.1007/s10587-008-0014-y | MR 2402535 | Zbl 1174.53024

[2] Bergery, L. Bérard: **Four-dimensional homogeneous Riemannian spaces**. Riemannian Geometry in Dimension 4. Papers from the Arthur Besse seminar held at the Université de Paris VII, Paris, 1978/1979 L. Bérard Bergery et al. Mathematical Texts 3 CEDIC, Paris (1981), French. MR 0769130

[3] Boeckx, E., Vanhecke, L.: **Unit tangent sphere bundles with constant scalar curvature**. Czech. Math. J. 51 (2001), 523-544. DOI 10.1023/A:1013779805244 | MR 1851545 | Zbl 1079.53063

[4] Graaf, W. A. de: **Classification of solvable Lie algebras**. Exp. Math. 14 (2005), 15-25. DOI 10.1080/10586458.2005.10128911 | MR 2146516 | Zbl 1173.17300

[5] Euh, Y., Park, J., Sekigawa, K.: **A curvature identity on a $4$-dimensional Riemannian manifold**. Result. Math. 63 (2013), 107-114. DOI 10.1007/s00025-011-0164-3 | MR 3009674 | Zbl 1273.53009

[6] Euh, Y., Park, J., Sekigawa, K.: **A generalization of a $4$-dimensional Einstein manifold**. Math. Slovaca 63 (2013), 595-610. MR 3071978

[7] Euh, Y., Park, J., Sekigawa, K.: **Critical metrics for quadratic functionals in the curvature on $4$-dimensional manifolds**. Differ. Geom. Appl. 29 (2011), 642-646. DOI 10.1016/j.difgeo.2011.07.001 | MR 2831820 | Zbl 1228.58010

[8] Gray, A., Willmore, T. J.: **Mean-value theorems for Riemannian manifolds**. Proc. R. Soc. Edinb., Sect. A 92 (1982), 343-364. DOI 10.1017/S0308210500032571 | MR 0677493 | Zbl 0495.53040

[9] Jensen, G. R.: **Homogeneous Einstein spaces of dimension four**. J. Differ. Geom. 3 (1969), 309-349. MR 0261487 | Zbl 0194.53203

[10] Milnor, J. W.: **Curvatures of left invariant metrics on Lie groups**. Adv. Math. 21 (1976), 293-329. DOI 10.1016/S0001-8708(76)80002-3 | MR 0425012 | Zbl 0341.53030