Previous |  Up |  Next

Article

Title: Generalized derivations on Lie ideals in prime rings (English)
Author: Dhara, Basudeb
Author: Kar, Sukhendu
Author: Mondal, Sachhidananda
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 1
Year: 2015
Pages: 179-190
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a prime ring with its Utumi ring of quotients $U$ and extended centroid $C$. Suppose that $F$ is a generalized derivation of $R$ and $L$ is a noncentral Lie ideal of $R$ such that $F(u)[F(u),u]^n=0$ for all $u \in L$, where $n\geq 1$ is a fixed integer. Then one of the following holds: \begin {itemize} \item [(1)] there exists $\lambda \in C$ such that $F(x)=\lambda x$ for all $x\in R$; \item [(2)] $R$ satisfies $s_4$ and $F(x)=ax+xb$ for all $x\in R$, with $a, b\in U$ and $a-b\in C$; \item [(3)] $\mathop {\rm char}(R)=2$ and $R$ satisfies $s_4$. \end {itemize} As an application we also obtain some range inclusion results of continuous generalized derivations on Banach algebras. (English)
Keyword: prime ring
Keyword: derivation
Keyword: generalized derivation
Keyword: extended centroid
Keyword: Utumi quotient ring
Keyword: Lie ideal
Keyword: Banach algebra
MSC: 16N60
MSC: 16W25
MSC: 16W80
idZBL: Zbl 06433728
idMR: MR3336032
DOI: 10.1007/s10587-015-0167-4
.
Date available: 2015-04-01T12:32:31Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144220
.
Reference: [1] Beidar, K. I., III, W. S. Martindale, Mikhalev, A. V.: Rings with Generalized Identities.Monographs and Textbooks in Pure and Applied Mathematics 196 Marcel Dekker, New York (1996). MR 1368853
Reference: [2] Bergen, J., Herstein, I. N., Kerr, J. W.: Lie ideals and derivations of prime rings.J. Algebra 71 (1981), 259-267. Zbl 0463.16023, MR 0627439, 10.1016/0021-8693(81)90120-4
Reference: [3] Brešar, M., Vukman, J.: On left derivations and related mappings.Proc. Am. Math. Soc. 110 (1990), 7-16. Zbl 0703.16020, MR 1028284, 10.1090/S0002-9939-1990-1028284-3
Reference: [4] Carini, L., Filippis, V. De: Commutators with power central values on a Lie ideal.Pac. J. Math. 193 (2000), 269-278. Zbl 1009.16034, MR 1755818, 10.2140/pjm.2000.193.269
Reference: [5] Chuang, C.-L.: G{PI}s having coefficients in Utumi quotient rings.Proc. Am. Math. Soc. 103 (1988), 723-728. Zbl 0656.16006, MR 0947646, 10.1090/S0002-9939-1988-0947646-4
Reference: [6] Filippis, V. De: Generalized derivations and commutators with nilpotent values on Lie ideals.Tamsui Oxf. J. Math. Sci. 22 (2006), 167-175. Zbl 1133.16022, MR 2285443
Reference: [7] Filippis, V. de, Scudo, G., El-Sayiad, M. S. Tammam: An identity with generalized derivations on Lie ideals, right ideals and Banach algebras.Czech. Math. J. 62 (2012), 453-468. MR 2990186, 10.1007/s10587-012-0039-0
Reference: [8] Dhara, B.: Power values of derivations with annihilator conditions on Lie ideals in prime rings.Commun. Algebra 37 (2009), 2159-2167. Zbl 1181.16035, MR 2531892, 10.1080/00927870802226213
Reference: [9] Erickson, T. S., III, W. S. Martindale, Osborn, J. M.: Prime nonassociative algebras.Pac. J. Math. 60 (1975), 49-63. MR 0382379, 10.2140/pjm.1975.60.49
Reference: [10] Johnson, B. E., Sinclair, A. M.: Continuity of derivations and a problem of Kaplansky.Am. J. Math. 90 (1968), 1067-1073. Zbl 0179.18103, MR 0239419, 10.2307/2373290
Reference: [11] Jacobson, N.: Structure of Rings.American Mathematical Society Colloquium Publications 37 American Mathematical Society, Providence (1964). MR 0222106
Reference: [12] Kharchenko, V. K.: Differential identities of prime rings.Algebra Logic 17 (1979), 155-168 translation from Algebra i Logika Russian 17 (1978), 220-238, 242-243. MR 0541758
Reference: [13] Kim, B.-D.: Jordan derivations on prime rings and their applications in Banach algebras, I.Commun. Korean Math. Soc. 28 (2013), 535-558. Zbl 1281.47021, MR 3085603, 10.4134/CKMS.2013.28.3.535
Reference: [14] Kim, B.-D.: Derivations of semiprime rings and noncommutative Banach algebras.Commun. Korean Math. Soc. 17 (2002), 607-618. Zbl 1101.46317, MR 1971004, 10.4134/CKMS.2002.17.4.607
Reference: [15] Kim, B.: On the derivations of semiprime rings and noncommutative Banach algebras.Acta Math. Sin., Engl. Ser. 16 (2000), 21-28. Zbl 0973.16020, MR 1760520, 10.1007/s101149900020
Reference: [16] Lanski, C.: Differential identities, Lie ideals, and Posner's theorems.Pac. J. Math. 134 (1988), 275-297. Zbl 0614.16028, MR 0961236, 10.2140/pjm.1988.134.275
Reference: [17] Lanski, C., Montgomery, S.: Lie structure of prime rings of characteristic $2$.Pac. J. Math. 42 (1972), 117-136. Zbl 0243.16018, MR 0323839, 10.2140/pjm.1972.42.117
Reference: [18] Lee, P. H., Lee, T. K.: Lie ideals of prime rings with derivations.Bull. Inst. Math., Acad. Sin. 11 (1983), 75-80. Zbl 0515.16018, MR 0718903
Reference: [19] Lee, T.-K.: Generalized derivations of left faithful rings.Commun. Algebra 27 (1999), 4057-4073. Zbl 0946.16026, MR 1700189, 10.1080/00927879908826682
Reference: [20] Lee, T. K.: Semiprime rings with differential identities.Bull. Inst. Math., Acad. Sin. 20 (1992), 27-38. Zbl 0769.16017, MR 1166215
Reference: [21] III, W. S. Martindale: Prime rings satisfying a generalized polynomial identity.J. Algebra 12 (1969), 576-584. MR 0238897, 10.1016/0021-8693(69)90029-5
Reference: [22] Mathieu, M.: Properties of the product of two derivations of a {$C^*$}-algebra.Can. Math. Bull. 32 (1989), 490-497. MR 1019418, 10.4153/CMB-1989-072-4
Reference: [23] Mathieu, M., Murphy, G. J.: Derivations mapping into the radical.Arch. Math. 57 (1991), 469-474. Zbl 0714.46038, MR 1129522, 10.1007/BF01246745
Reference: [24] Park, K.-H.: On derivations in noncommutative semiprime rings and Banach algebras.Bull. Korean Math. Soc. 42 (2005), 671-678. Zbl 1105.16031, MR 2181155, 10.4134/BKMS.2005.42.4.671
Reference: [25] Posner, E. C.: Derivations in prime rings.Proc. Am. Math. Soc. 8 (1957), 1093-1100. MR 0095863, 10.1090/S0002-9939-1957-0095863-0
Reference: [26] Sinclair, A. M.: Continuous derivations on Banach algebras.Proc. Am. Math. Soc. 20 (1969), 166-170. Zbl 0164.44603, MR 0233207, 10.1090/S0002-9939-1969-0233207-X
Reference: [27] Singer, I. M., Wermer, J.: Derivations on commutative normed algebras.Math. Ann. 129 (1955), 260-264. Zbl 0067.35101, MR 0070061, 10.1007/BF01362370
Reference: [28] Thomas, M. P.: The image of a derivation is contained in the radical.Ann. Math. (2) 128 (1988), 435-460. Zbl 0681.47016, MR 0970607
Reference: [29] Vukman, J.: On derivations in prime rings and Banach algebras.Proc. Am. Math. Soc. 116 (1992), 877-884. Zbl 0792.16034, MR 1072093, 10.1090/S0002-9939-1992-1072093-8
Reference: [30] Yood, B.: Continuous homomorphisms and derivations on Banach algebras.Proceedings of the Conference on Banach Algebras and Several Complex Variables, New Haven, Conn., 1983 Contemp. Math. 32 Amer. Math. Soc., Providence (1984), 279-284 F. Greenleaf et al. Zbl 0569.46025, MR 0769517
.

Files

Files Size Format View
CzechMathJ_65-2015-1_10.pdf 285.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo