Previous |  Up |  Next

Article

Title: Ojective ideals in modular lattices (English)
Author: Nimbhorkar, Shriram K.
Author: Shroff, Rupal C.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 1
Year: 2015
Pages: 161-178
Summary lang: English
.
Category: math
.
Summary: The concept of an extending ideal in a modular lattice is introduced. A translation of module-theoretical concept of ojectivity (i.e. generalized relative injectivity) in the context of the lattice of ideals of a modular lattice is introduced. In a modular lattice satisfying a certain condition, a characterization is given for direct summands of an extending ideal to be mutually ojective. We define exchangeable decomposition and internal exchange property of an ideal in a modular lattice. It is shown that a finite decomposition of an extending ideal is exchangeable if and only if its summands are mutually ojective. (English)
Keyword: modular lattice
Keyword: essential ideal
Keyword: max-semicomplement
Keyword: extending ideal
Keyword: direct summand
Keyword: exchangeable decomposition
Keyword: ojective ideal
MSC: 06B10
MSC: 06C05
MSC: 16D10
idZBL: Zbl 06433727
idMR: MR3336031
DOI: 10.1007/s10587-015-0166-5
.
Date available: 2015-04-01T12:30:16Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144219
.
Reference: [1] Akalan, E., Birkenmeier, G. F., Tercan, A.: Goldie extending modules.Commun. Algebra 37 (2009), 663-683; Corrigendum. 38 4747-4748 (2010); Corrigendum. 41 2005 (2013). Zbl 1278.16005, MR 2493810, 10.1080/00927870802254843
Reference: [2] Birkenmeier, G. F., Müller, B. J., Rizvi, S. T.: Modules in which every fully invariant submodule is essential in a direct summand.Commun. Algebra 30 (2002), 1395-1415. Zbl 1006.16010, MR 1892606, 10.1080/00927870209342387
Reference: [3] Grätzer, G.: General Lattice Theory.Birkhäuser Basel (1998). MR 1670580
Reference: [4] Grzeszczuk, P., Puczyłowski, E. R.: On finiteness conditions of modular lattices.Commun. Algebra 26 (1998), 2949-2957. Zbl 0914.06003, MR 1635878, 10.1080/00927879808826319
Reference: [5] Grzeszczuk, P., Puczyłowski, E. R.: On Goldie and dual Goldie dimensions.J. Pure Appl. Algebra 31 (1984), 47-54. Zbl 0528.16010, MR 0738204, 10.1016/0022-4049(84)90075-6
Reference: [6] Hanada, K., Kuratomi, Y., Oshiro, K.: On direct sums of extending modules and internal exchange property.J. Algebra 250 (2002), 115-133. Zbl 1007.16005, MR 1898379, 10.1006/jabr.2001.9089
Reference: [7] Harmanci, A., Smith, P. F.: Finite direct sums of CS-modules.Houston J. Math. 19 (1993), 523-532. Zbl 0802.16006, MR 1251607
Reference: [8] Kamal, M. A., Müller, B. J.: Extending modules over commutative domains.Osaka J. Math. 25 (1988), 531-538. Zbl 0715.13006, MR 0969016
Reference: [9] Kamal, M. A., Müller, B. J.: The structure of extending modules over Noetherian rings.Osaka J. Math. 25 (1988), 539-551. Zbl 0715.16005, MR 0969017
Reference: [10] Kamal, M. A., Müller, B. J.: Torsion free extending modules.Osaka J. Math. 25 (1988), 825-832. Zbl 0703.13010, MR 0983803
Reference: [11] Lam, T. Y.: Lectures on Modules and Rings.Graduate Texts in Mathematics 189 Springer, New York (1999). MR 1653294, 10.1007/978-1-4612-0525-8
Reference: [12] Mohamed, S. H., Müller, B. J.: Ojective modules.Commun. Algebra 30 (2002), 1817-1827. Zbl 0998.16005, MR 1894046, 10.1081/AGB-120013218
.

Files

Files Size Format View
CzechMathJ_65-2015-1_9.pdf 340.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo