Previous |  Up |  Next

Article

Title: Note on enumeration of labeled split graphs (English)
Author: Bína, Vladislav
Author: Přibil, Jiří
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 2
Year: 2015
Pages: 133-137
Summary lang: English
.
Category: math
.
Summary: The paper brings explicit formula for enumeration of vertex-labeled split graphs with given number of vertices. The authors derive this formula combinatorially using an auxiliary assertion concerning number of split graphs with given clique number. In conclusion authors discuss enumeration of vertex-labeled bipartite graphs, i.e., a graphical class defined in a similar manner to the class of split graphs. (English)
Keyword: graph enumeration
Keyword: labeled graph
Keyword: split graph
MSC: 05A15
MSC: 05C30
idZBL: Zbl 06433812
idMR: MR3338727
DOI: 10.14712/1213-7243.2015.112
.
Date available: 2015-04-25T16:55:46Z
Last updated: 2017-08-07
Stable URL: http://hdl.handle.net/10338.dmlcz/144234
.
Reference: [1] Bender E.A., Richmond L.B., Wormald N.C.: Almost all chordal graphs split.J. Austral. Math. Soc. Ser. A 38 (2) (1985), no. 2, 214–221. Zbl 0571.05026, MR 0770128, 10.1017/S1446788700023077
Reference: [2] Bína V.: Enumeration of labeled split graphs and counts of important superclasses.in Proceedings of 10th Cologne-Twente Workshop on Graphs and Combinatorial Optimization (CTW'11), Frascati (2011), pp. 72–75.
Reference: [3] Bína V.: Sequence A179534 in The On-Line Encyclopedia of Integer Sequences.http://oeis.org/A179534 (2010).
Reference: [4] Bína V.: Multidimensional probability distributions: Structure and learning.Ph.D. Thesis, Faculty of Management in Jindřichův Hradec, Univ. of Economics in Prague, 2011.
Reference: [5] Edwards D., Havránek T.: A fast procedure for model search in multidimensional contingency tables.Biometrika 72 (1985), 339–351. Zbl 0576.62067, MR 0801773, 10.1093/biomet/72.2.339
Reference: [6] Gebhardt V.: Computing growth functions of braid monoids and counting vertex-labelled bipartite graphs.J. Combin. Theory Ser. A 120 (2013), no. 1, 232–244. Zbl 1253.05145, MR 2971709, 10.1016/j.jcta.2012.08.003
Reference: [7] Hammer P.L., Simeone B.: The splittance of a graph.Combinatorica 1 (1981), no. 3, 275–284. Zbl 0492.05043, MR 0637832, 10.1007/BF02579333
Reference: [8] Royle G.F.: Counting set covers and split graphs.J. Integer Seq. 3 (2000), https://cs.uwaterloo.ca/journals/JIS/VOL3/ROYLE/royle.html. Zbl 0953.05033, MR 1778996
Reference: [9] Sloane N.J.A.: Sequence A047864 in The On-Line Encyclopedia of Integer Sequences.http://oeis.org/A047864 (1999).
Reference: [10] Wilf H.S.: Generatingfunctionology.Academic Press, San Diego, 1990, p. 80, Equation 3.11.5. Zbl 1092.05001, MR 1034250
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_56-2015-2_1.pdf 197.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo