Previous |  Up |  Next

Article

Title: On finite commutative loops which are centrally nilpotent (English)
Author: Leppälä, Emma
Author: Niemenmaa, Markku
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 2
Year: 2015
Pages: 139-143
Summary lang: English
.
Category: math
.
Summary: Let $Q$ be a finite commutative loop and let the inner mapping group $I(Q) \cong C_{p^n} \times C_{p^n}$, where $p$ is an odd prime number and $n \geq 1$. We show that $Q$ is centrally nilpotent of class two. (English)
Keyword: loop
Keyword: inner mapping group
Keyword: centrally nilpotent loop
MSC: 20D15
MSC: 20N05
idZBL: Zbl 06433813
idMR: MR3338728
DOI: 10.14712/1213-7243.2015.113
.
Date available: 2015-04-25T16:57:00Z
Last updated: 2017-08-07
Stable URL: http://hdl.handle.net/10338.dmlcz/144236
.
Reference: [1] Bruck R.H.: Contributions to the theory of loops.Trans. Amer. Math. Soc. 60 (1946), 245–354. Zbl 0061.02201, MR 0017288, 10.1090/S0002-9947-1946-0017288-3
Reference: [2] Csörgö P.: Abelian inner mappings and nilpotency class greater than two.European J. Combin. 28 (2007), 858–867. Zbl 1149.20053, MR 2300766, 10.1016/j.ejc.2005.12.002
Reference: [3] Drápal A., Vojtěchovský P.: Explicit constructions of loops with commuting inner mappings.European J. Combin. 29 (2008), no. 7, 1662–1681. MR 2431758, 10.1016/j.ejc.2007.10.001
Reference: [4] Kepka T., Niemenmaa M.: On loops with cyclic inner mapping groups.Arch. Math. 60 (1993), 233–236. MR 1201636, 10.1007/BF01198806
Reference: [5] Niemenmaa M.: On finite loops whose inner mapping groups are abelian II.Bull. Austral. Math. Soc. 71 (2005), 487–492. Zbl 1080.20061, MR 2150938, 10.1017/S0004972700038491
Reference: [6] Niemenmaa M., Kepka T.: On multiplication groups of loops.J. Algebra 135 (1990), 112–122. Zbl 0706.20046, MR 1076080, 10.1016/0021-8693(90)90152-E
Reference: [7] Niemenmaa M., Kepka T.: On connected transversals to abelian subgroups.Bull. Austral. Math. Soc. 49 (1994), 121–128. Zbl 0799.20020, MR 1262682, 10.1017/S0004972700016166
Reference: [8] Niemenmaa M., Rytty M.: Connected transversals and multiplication groups of loops.Quasigroups and Related Systems 15 (2007), 95–107. Zbl 1133.20009, MR 2379127
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_56-2015-2_2.pdf 191.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo