Previous |  Up |  Next

Article

Title: Positive solutions for a system of third-order differential equation with multi-point and integral conditions (English)
Author: Jebari, Rochdi
Author: Boukricha, Abderrahman
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 2
Year: 2015
Pages: 187-207
Summary lang: English
.
Category: math
.
Summary: This paper concerns the following system of nonlinear third-order boundary value problem: \begin{equation*} u_{i}'''(t)+f_{i}(t,u_{1}(t),\dots ,u_{n}(t),u'_{1}(t),\dots ,u'_{n}(t))= 0, 0<t<1, i\in \{1,\dots ,n\} \end{equation*} with the following multi-point and integral boundary conditions: $$ \begin{cases} u_{i}(0)=0 u_{i}'(0)=0 u_{i}'(1)= \sum^{p}_{j=1}\beta_{j,i}u_{i}'(\eta_{j,i}) + \int^{1}_{0}h_{i}(u_{1}(s),\dots ,u_{n}(s))\,ds \end{cases} $$ where $\beta_{j,i}>0$, $0< \eta_{1,i}<\dots <\eta_{p,i}<\frac{1}{2}$, $f_{i}:[0,1]\times \mathbb{R}^{n}\times \mathbb{R}^{n}\rightarrow \mathbb{R}$ and $h_{i}:[0,1]\times \mathbb{R}^{n}\rightarrow \mathbb{R}$ are continuous functions for all $i\in \{1,\dots ,n\}$ and $j\in \{1,\dots ,p\}$. Using Guo-Krasnosel'skii fixed point theorem in cone, we discuss the existence of positive solutions of this problem. We also prove nonexistence of positive solutions and we give some examples to illustrate our results. (English)
Keyword: third-order differential equation
Keyword: multi-point and integral boundary conditions
Keyword: Guo-Krasnosel'skii fixed point theorem in cone
Keyword: positive solutions
MSC: 34B10
MSC: 34B15
MSC: 34B18
MSC: 34B27
idZBL: Zbl 06433817
idMR: MR3338732
DOI: 10.14712/1213-7243.2015.117
.
Date available: 2015-04-25T17:03:03Z
Last updated: 2017-08-07
Stable URL: http://hdl.handle.net/10338.dmlcz/144240
.
Reference: [1] Gregus M.: Third order linear differential equations.in Math. Appl., Reidel, Dordrecht, 1987. Zbl 0602.34005, MR 0882545
Reference: [2] Yao Q., Feng Y.: The existence of solution for a third-order two-point boundary value problem.Appl. Math. Lett. 15 (2002), 227–232. Zbl 1008.34010, MR 1880762, 10.1016/S0893-9659(01)00122-7
Reference: [3] Feng Y., Liu S.: Solvability of a third-order two-point boundary value problem.Appl. Math. Lett. 18 (2005), 1034–1040. Zbl 1094.34506, MR 2156998, 10.1016/j.aml.2004.04.016
Reference: [4] Klaasen G.: Differential inequalities and existence theorems for second and third order boundary value problems.J. Differential Equations 10 (1971), 529–537. Zbl 0218.34024, MR 0288397, 10.1016/0022-0396(71)90010-6
Reference: [5] Jackson L.K.: Existence and uniqueness of solutions of boundary value problems for third order differential equations.J. Differential Equations 13 (1973), 432–437. Zbl 0256.34018, MR 0335925, 10.1016/0022-0396(73)90002-8
Reference: [6] O'Regan D.: Topological transversality: Application to third order boundary value problems.SIAM J. Math. Anal. 19 (1987), 630–641. MR 0883557, 10.1137/0518048
Reference: [7] Sun Y.: Positive solutions for third-order three-point nonhomogeneous boundary value problems.Appl. Math. Lett. 22 (2009) 45–51. Zbl 1163.34313, MR 2483159, 10.1016/j.aml.2008.02.002
Reference: [8] Guo L.J., Sun J.P., Zhao Y.H.: Existence of positive solution for nonlinear third-order three-point boundary value problem.Nonlinear Anal. 68 (2008), 3151–3158. MR 2404825, 10.1016/j.na.2007.03.008
Reference: [9] Guo D., Lakshmikantham V.: Nonlinear Problems in Abstract Cones.Academic Press, San Diego, 1988. Zbl 0661.47045, MR 0959889
Reference: [10] Deimling K.: Nonlinear Functional Analysis.Springer, Berlin, 1985. Zbl 0559.47040, MR 0787404
Reference: [11] Zhang X.G., Liu L.S., and Wu C.X.: Nontrivial solution of third-order nonlinear eigenvalue problems.Appl. Math. Comput. 176 (2006), 714–721. MR 2232063, 10.1016/j.amc.2005.10.017
Reference: [12] Chen H.: Positive solutions for the nonhomogeneous three-point boundary value problem of second order differential equations.Math. Comput. Modelling 45 (2007), 844–852. Zbl 1137.34319, MR 2297125, 10.1016/j.mcm.2006.08.004
Reference: [13] Graef J.R., Yang B.: Multiple positive solution to a three-point third order boundary value problems.Discrete Contin. Dyn. Syst. 2005, suppl., pp. 1–8. MR 2192690
Reference: [14] Ma R.: Positive solutions for a second order three-point boundary value problems.Appl. Math. Lett. 14 (2001), 1–5. MR 1793693, 10.1016/S0893-9659(00)00102-6
Reference: [15] Yao Q.L.: The existence and multiplicity of positive solutions for third-order three-point boundary value problem.Acta Math. Appl. Sinica 19 (2003), 117–122. MR 2053778, 10.1007/s10255-003-0087-1
Reference: [16] Anderson D.: Multiple positive solutions for a three-point boundary value problem.Math. Comput. Modelling 27 (1998), 49–57. Zbl 0906.34014, MR 1620897, 10.1016/S0895-7177(98)00028-4
Reference: [17] Goodrich C.S.: Existence of a positive solution to a nonlocal semipositone boundary value problem on a time scale.Comment. Math. Univ. Carolin. 54 (2013), no. 4, 509–525. MR 3125073
Reference: [18] Anderson D.: Green's function for a third-order generalized right focal problem.J. Math. Anal. Appl. 288 (2003), 1–14. Zbl 1045.34008, MR 2019740, 10.1016/S0022-247X(03)00132-X
Reference: [19] Boucherif A., Al-Malki N.: Nonlinear three-point third order boundary value problems.Appl. Math. Comput. 190 (2007), 1168–1177. Zbl 1134.34007, MR 2339710, 10.1016/j.amc.2007.02.039
Reference: [20] Kong L., Kong Q.: Multi-point boundary value problems of second-order differential equations \rm (I).Nonlinear. Anal. 58 (2004), 909–931. Zbl 1066.34012, MR 2086064, 10.1016/j.na.2004.03.033
Reference: [21] Kong L., Kong Q.: Multi-point boundary value problems of second-order differential equations \rm (II).Comm. Appl. Nonlinear. Anal. 14 (2007), 93–111. Zbl 1140.34008, MR 2294496
Reference: [22] Henderson J., Ntouyas S.K., Purnaras I.K.: Positive solutions for systems of generalized three-point nonlinear boundary value problems.Comment. Math. Univ. Carolin. 49 (2008), no. 1, 79–91. Zbl 1212.34058, MR 2433626
Reference: [23] Jebari R., Boukricha A.: Solvability and positive solution of a system of second-order boundary value problem with integral boundary conditions.Bound. Value Probl. 2014, DOI: 10.1186/s13661-014-0262-8. MR 3291555, 10.1186/s13661-014-0262-8
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_56-2015-2_6.pdf 284.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo