Previous |  Up |  Next

Article

Keywords:
$p$-pseudocompactness; ultrapseudocompactness; strongly pseudocompactness; strongly $p$-pseudocompactness; weak $P$-points; $\mathfrak{c}$-OK points
Summary:
Let $W$ be the subspace of $\mathbb N^*$ consisting of all weak $P$-points. It is not hard to see that $W$ is a pseudocompact space. In this paper we shall prove that this space has stronger pseudocompact properties. Indeed, it is shown that $W$ is a $p$-pseudocompact space for all $p \in \mathbb N^*$.
References:
[1] Angoa J., Ortiz-Castillo Y., Tamariz-Mascarúa Á.: Compact-like properties in hyperspaces. Mat. Vesnik 65 (2013), 306–318. MR 3057283
[2] Angoa J., Ortiz-Castillo Y., Tamariz-Mascarúa A.: Ultrafilters and properties related to compactness. Top. Proc. 43 (2014), 183–200. MR 3096293
[3] Bernstein A.: A new kind of compactness for topological spaces. Fund. Math. 66 (1970), 185–193. MR 0251697 | Zbl 0198.55401
[4] Boldjiev B., Malykhin V. I.: The sequentiality is equivalent to the Fréchet-Urysohn property. Comment. Math. Univ. Carolin. 31 (1990), 23–25. MR 1056166
[5] Engelking R.: General Topology. Heldermann Verlag, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[6] García-Ferreira S., Ortiz-Castillo Y. F.: Strong pseudocompact properties. Comment. Math. Univ. Carolinae 55 (2014), 101–109. MR 3160828
[7] García-Ferreira S., Malykhin V. I.: $p$-sequentiality and $p$-Fréchet-Urysohn property of Franklin compact spaces. Proc. Amer. Math. Soc. 124 (1996), 2267–2273. DOI 10.1090/S0002-9939-96-03322-9 | MR 1327014 | Zbl 0849.54004
[8] García-Ferreira S., Sanchis M.: On $C$-compact subsets. Houston J. Math. 23, 1997, 65–86. MR 1688689 | Zbl 0881.54019
[9] García-Ferreira S., Tomita A. H.: A pseudocompact groups which is not strongly pseudocompact. submitted.
[10] Ginsburg J., Saks V.: Some applications of ultrafilters in topology. Pacific J. Math. 57 (1975), 403–418. DOI 10.2140/pjm.1975.57.403 | MR 0380736 | Zbl 0288.54020
[11] Kunen K.: Weak $P$-points in $\mathbb N^{*}$. Topology, Vol. II (Proc. Fourth Colloq., Budapest, 1978), pp. 741–749, Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam-New York, 1980. MR 0588822
[12] Sanchis M., Tamariz-Mascarúa Á.: p-pseudocompactness and related topics in topological spaces. Topology Appl. 98 (1999), 323–343. DOI 10.1016/S0166-8641(98)00111-4 | MR 1720010 | Zbl 0970.54008
[13] D. B. Shakhmatov: A pseudocompact Tychonoff space all countable subsets of which are closed and C*-embedded. Topology Appl. 22 (1986), 139–144. DOI 10.1016/0166-8641(86)90004-0 | MR 0836321
[14] van Mill J.: An introduction to $\beta \omega$. Handbook of Set-theoretic Top., Chap. 11, Elsevier Science Publishers B.V., (1984) p. 503–567. MR 0776630 | Zbl 0555.54004
Partner of
EuDML logo