Previous |  Up |  Next

Article

Title: The subspace of weak $P$-points of $\mathbb{N}^*$ (English)
Author: García-Ferreira, S.
Author: Ortiz-Castillo, Y. F.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 2
Year: 2015
Pages: 231-236
Summary lang: English
.
Category: math
.
Summary: Let $W$ be the subspace of $\mathbb N^*$ consisting of all weak $P$-points. It is not hard to see that $W$ is a pseudocompact space. In this paper we shall prove that this space has stronger pseudocompact properties. Indeed, it is shown that $W$ is a $p$-pseudocompact space for all $p \in \mathbb N^*$. (English)
Keyword: $p$-pseudocompactness
Keyword: ultrapseudocompactness
Keyword: strongly pseudocompactness
Keyword: strongly $p$-pseudocompactness
Keyword: weak $P$-points
Keyword: $\mathfrak{c}$-OK points
MSC: 54A20
MSC: 54A25
MSC: 54C45
MSC: 54D40
MSC: 54D45
MSC: 54D80
MSC: 54D99
idZBL: Zbl 06433820
idMR: MR3338735
DOI: 10.14712/1213-7243.2015.120
.
Date available: 2015-04-25T17:07:02Z
Last updated: 2017-08-07
Stable URL: http://hdl.handle.net/10338.dmlcz/144243
.
Reference: [1] Angoa J., Ortiz-Castillo Y., Tamariz-Mascarúa Á.: Compact-like properties in hyperspaces.Mat. Vesnik 65 (2013), 306–318. MR 3057283
Reference: [2] Angoa J., Ortiz-Castillo Y., Tamariz-Mascarúa A.: Ultrafilters and properties related to compactness.Top. Proc. 43 (2014), 183–200. MR 3096293
Reference: [3] Bernstein A.: A new kind of compactness for topological spaces.Fund. Math. 66 (1970), 185–193. Zbl 0198.55401, MR 0251697
Reference: [4] Boldjiev B., Malykhin V. I.: The sequentiality is equivalent to the Fréchet-Urysohn property.Comment. Math. Univ. Carolin. 31 (1990), 23–25. MR 1056166
Reference: [5] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [6] García-Ferreira S., Ortiz-Castillo Y. F.: Strong pseudocompact properties.Comment. Math. Univ. Carolinae 55 (2014), 101–109. MR 3160828
Reference: [7] García-Ferreira S., Malykhin V. I.: $p$-sequentiality and $p$-Fréchet-Urysohn property of Franklin compact spaces.Proc. Amer. Math. Soc. 124 (1996), 2267–2273. Zbl 0849.54004, MR 1327014, 10.1090/S0002-9939-96-03322-9
Reference: [8] García-Ferreira S., Sanchis M.: On $C$-compact subsets.Houston J. Math. 23, 1997, 65–86. Zbl 0881.54019, MR 1688689
Reference: [9] García-Ferreira S., Tomita A. H.: A pseudocompact groups which is not strongly pseudocompact.submitted.
Reference: [10] Ginsburg J., Saks V.: Some applications of ultrafilters in topology.Pacific J. Math. 57 (1975), 403–418. Zbl 0288.54020, MR 0380736, 10.2140/pjm.1975.57.403
Reference: [11] Kunen K.: Weak $P$-points in $\mathbb N^{*}$.Topology, Vol. II (Proc. Fourth Colloq., Budapest, 1978), pp. 741–749, Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam-New York, 1980. MR 0588822
Reference: [12] Sanchis M., Tamariz-Mascarúa Á.: p-pseudocompactness and related topics in topological spaces.Topology Appl. 98 (1999), 323–343. Zbl 0970.54008, MR 1720010, 10.1016/S0166-8641(98)00111-4
Reference: [13] D. B. Shakhmatov: A pseudocompact Tychonoff space all countable subsets of which are closed and C*-embedded.Topology Appl. 22 (1986), 139–144. MR 0836321, 10.1016/0166-8641(86)90004-0
Reference: [14] van Mill J.: An introduction to $\beta \omega$.Handbook of Set-theoretic Top., Chap. 11, Elsevier Science Publishers B.V., (1984) p. 503–567. Zbl 0555.54004, MR 0776630
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_56-2015-2_9.pdf 214.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo