Title:
|
$\Sigma_s$-products revisited (English) |
Author:
|
Rojas-Hernández, Reynaldo |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
56 |
Issue:
|
2 |
Year:
|
2015 |
Pages:
|
243-255 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We show that any $\Sigma_s$-product of at most $\mathfrak{c}$-many $L\Sigma(\leq \omega)$-spaces has the $L\Sigma(\leq \omega)$-property. This result generalizes some known results about $L\Sigma(\leq \omega)$-spaces. On the other hand, we prove that every $\Sigma_s$-product of monotonically monolithic spaces is monotonically monolithic, and in a similar form, we show that every $\Sigma_s$-product of Collins-Roscoe spaces has the Collins-Roscoe property. These results generalize some known results about the Collins-Roscoe spaces and answer some questions due to Tkachuk [{Lifting the Collins-Roscoe property by condensations}, Topology Proc. {42} (2012), 1--15]. Besides, we prove that if $X$ is a simple Lindelöf $\Sigma$-space, then $C_p(X)$ has the Collins-Roscoe property. (English) |
Keyword:
|
$\Sigma_s$-product |
Keyword:
|
Lindelöf $\Sigma$-space |
Keyword:
|
$L\Sigma(\leq \omega)$-space |
Keyword:
|
monotonically monolithic space |
Keyword:
|
Collins-Roscoe space |
Keyword:
|
function space |
Keyword:
|
simple space |
MSC:
|
54B10 |
MSC:
|
54C35 |
MSC:
|
54D99 |
idZBL:
|
Zbl 06433822 |
idMR:
|
MR3338737 |
DOI:
|
10.14712/1213-7243.2015.122 |
. |
Date available:
|
2015-04-25T17:09:17Z |
Last updated:
|
2017-08-07 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144245 |
. |
Reference:
|
[1] Alas O., Tkachuk V., Wilson R.: A broader context for monotonically monolithic spaces.Acta Math. Hungar. 125 (2009), no. 4, 369–385. Zbl 1274.54043, MR 2564435, 10.1007/s10474-009-9034-9 |
Reference:
|
[2] Arhangel'skii A.V.: Topological Function Spaces.Kluwer Acad. Publ., Dordrecht, 1992. MR 1485266 |
Reference:
|
[3] Collins P.J., Roscoe A.W.: Criteria for metrisability.Proc. Amer. Math. Soc. 90 (1984), no. 4, 631–640. Zbl 0541.54034, MR 0733418, 10.1090/S0002-9939-1984-0733418-9 |
Reference:
|
[4] Engelking R.: General Topology.second edition, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[5] Gruenhage G.: Monotonically monolithic spaces, Corson compacts and $D$-spaces.Topology Appl. 159 (2012), 1559–1564. Zbl 1241.54013, MR 2891421 |
Reference:
|
[6] Guo H., Junnila H.J.K.: $D$-spaces and thick covers.Topology Appl. 158 (2011), 2111–2121. Zbl 1244.54056, MR 2831896, 10.1016/j.topol.2011.06.053 |
Reference:
|
[7] Kubiś W., Okunev O., Szeptycki P.J.: On some classes of Lindelöf $\Sigma$-spaces.Topology Appl. 153 (2006), 2574–2590. Zbl 1102.54028, MR 2243735 |
Reference:
|
[8] Molina Lara I., Okunev O.: $L\Sigma(\leq\omega)$-spaces and spaces of continuous functions.Central European J. Math. 8 (2010), 754–762. Zbl 1209.54005, MR 2671223, 10.2478/s11533-010-0039-y |
Reference:
|
[9] Okunev O.G.: On Lindelöf $\Sigma$-spaces of continuous functions in the pointwise topology.Topology Appl. 49 (1993), 149–166. Zbl 0796.54026, MR 1206222, 10.1016/0166-8641(93)90041-B |
Reference:
|
[10] Sokolov G.A.: On some class of compact spaces lying in $\Sigma$-products.Comment. Math. Univ. Carolin. 25 (1984), no. 2, 219–231. MR 0768809 |
Reference:
|
[11] Tkačenko M.G.: $\mathcal{P}$-approximable compact spaces.Comment. Math. Univ. Carolin. 32 (1991), 583–595. MR 1159804 |
Reference:
|
[12] Tkachuk V.V.: A glance at compact spaces which map “nicely” onto the metrizable ones.Topology Proc. 19 (1994), 321–334. Zbl 0854.54022, MR 1369767 |
Reference:
|
[13] Tkachuk V.V.: Behaviour of the Lindelöf $\Sigma$-property in iterated function spaces.Topology Appl. 107 (2000), 297–305. MR 1779816, 10.1016/S0166-8641(99)00112-1 |
Reference:
|
[14] Tkachuk V.V.: Condensing function spaces into $\Sigma$-products of real lines.Houston J. Math. 33 (2007), no. 1, 209–228. Zbl 1126.54012, MR 2287851 |
Reference:
|
[15] Tkachuk V.V.: Lifting the Collins-Roscoe property by condensations.Topology Proc. 42 (2012), 1–15. Zbl 1280.54011, MR 2943585 |
Reference:
|
[16] Tkachuk V.V.: Monolithic spaces and $D$-spaces revisited.Topology Appl. 156 (2009), 840–846. Zbl 1165.54009, MR 2492968, 10.1016/j.topol.2008.11.001 |
Reference:
|
[17] Tkachuk V.V.: Some criteria for $C_p(X)$ to be an $L\Sigma(\leq \kappa)$-space.Rocky Mountain J. Math. 43 (2013), 373–384. MR 3065471, 10.1216/RMJ-2013-43-1-373 |
Reference:
|
[18] Tkachuk V.V.: The Collins-Roscoe property and its applications in the theory of function spaces.Topology Appl. 159 (2012), 1529–1535. Zbl 1245.54022, MR 2891418, 10.1016/j.topol.2010.08.022 |
. |