Previous |  Up |  Next

Article

Title: Coherent ultrafilters and nonhomogeneity (English)
Author: Starý, Jan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 2
Year: 2015
Pages: 257-264
Summary lang: English
.
Category: math
.
Summary: We introduce the notion of a {coherent $P$-ultrafilter} on a complete ccc Boolean algebra, strengthening the notion of a $P$-point on $\omega$, and show that these ultrafilters exist generically under $\mathfrak c = \mathfrak d$. This improves the known existence result of Ketonen [{On the existence of $P$-points in the Stone-Čech compactification of integers}, Fund. Math. {92} (1976), 91--94]. Similarly, the existence theorem of Canjar [{On the generic existence of special ultrafilters}, Proc. Amer. Math. Soc. {110} (1990), no. 1, 233--241] can be extended to show that {coherently selective ultrafilters} exist generically under $\mathfrak c = \operatorname{cov}\mathcal M$. We use these ultrafilters in a topological application: a coherent $P$-ultrafilter on an algebra $\mathcal B$ is an {untouchable point} in the Stone space of $\mathcal B$, witnessing its nonhomogeneity. (English)
Keyword: nonhomogeneity
Keyword: ultrafilter
Keyword: Boolean algebra
Keyword: untouchable point
MSC: 06E10
MSC: 54A20
MSC: 54G05
idZBL: Zbl 06433823
idMR: MR3338738
DOI: 10.14712/1213-7243.2015.123
.
Date available: 2015-04-25T17:09:59Z
Last updated: 2017-08-07
Stable URL: http://hdl.handle.net/10338.dmlcz/144246
.
Reference: [BS] Balcar B., Simon P.: On minimal $\pi$-character of points in extremally disconnected compact spaces.Topology Appl. 41 (1991), 133–145. Zbl 0752.54013, MR 1129703, 10.1016/0166-8641(91)90105-U
Reference: [C] Canjar R.M.: On the generic existence of special ultrafilters.Proc. Amer. Math. Soc. 110 (1990), no. 1, 233–241. Zbl 0715.03018, MR 0993747, 10.1090/S0002-9939-1990-0993747-3
Reference: [F] Frolík Z.: Maps of extremally disconnected spaces, theory of types, and applications.in Franklin, Frolík, Koutník (eds.), General Topology and Its Relations to Modern Analysis and Algebra, Proceedings of the Kanpur topological conference (1971), pp. 131–142. MR 0295305
Reference: [K] Ketonen J.: On the existence of $P$-points in the Stone-Čech compactification of integers.Fund. Math. 92 (1976), 91–94. Zbl 0339.54035, MR 0433387
Reference: [S] Simon P.: Points in extremally disconnected compact spaces.Rend. Circ. Mat. Palermo (2). Suppl. 24 (1990), 203–213. Zbl 0752.54013, MR 1108207
Reference: [W] Wimmer E.L.: The Shelah $P$-point independence theorem.Israel J. Math 43 (1982), no. 1, 28–48. MR 0728877, 10.1007/BF02761683
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_56-2015-2_12.pdf 223.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo