Previous |  Up |  Next

Article

Title: Model analysis of BPX preconditioner based on smoothed aggregation (English)
Author: Fraňková, Pavla
Author: Mandel, Jan
Author: Vaněk, Petr
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 60
Issue: 3
Year: 2015
Pages: 219-250
Summary lang: English
.
Category: math
.
Summary: We prove nearly uniform convergence bounds for the BPX preconditioner based on smoothed aggregation under the assumption that the mesh is regular. The analysis is based on the fact that under the assumption of regular geometry, the coarse-space basis functions form a system of macroelements. This property tends to be satisfied by the smoothed aggregation bases formed for unstructured meshes. (English)
Keyword: smoothed aggregation
Keyword: parallel preconditioner
Keyword: BPX preconditioner
MSC: 65F10
MSC: 65M55
idZBL: Zbl 06486909
idMR: MR3419960
DOI: 10.1007/s10492-015-0093-7
.
Date available: 2015-05-15T07:34:21Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144260
.
Reference: [1] Bramble, J. H., Pasciak, J. E., Wang, J., Xu, J.: Convergence estimates for multigrid algorithms without regularity assumptions.Math. Comput. 57 (1991), 23-45. Zbl 0727.65101, MR 1079008, 10.1090/S0025-5718-1991-1079008-4
Reference: [2] Bramble, J. H., Pasciak, J. E., Xu, J.: Parallel multilevel preconditioners.Math. Comput. 55 (1990), 1-22. Zbl 0725.65095, MR 1023042, 10.1090/S0025-5718-1990-1023042-6
Reference: [3] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Its Applications 4 North-Holland Publishing Company, Amsterdam (1978). Zbl 0383.65058, MR 0520174
Reference: [4] Vaněk, P.: Acceleration of convergence of a two-level algorithm by smoothing transfer operators.Appl. Math., Praha 37 (1992), 265-274. MR 1180605
Reference: [5] Vaněk, P.: Fast multigrid solver.Appl. Math., Praha 40 1-20 (1995). Zbl 0824.65016, MR 1305645
Reference: [6] Vaněk, P., Brezina, M.: Nearly optimal convergence result for multigrid with aggressive coarsening and polynomial smoothing.Appl. Math., Praha 58 369-388 (2013). Zbl 1289.65064, MR 3083519, 10.1007/s10492-013-0018-2
Reference: [7] Vaněk, P., Brezina, M., Mandel, J.: Convergence of algebraic multigrid based on smoothed aggregation.Numer. Math. 88 559-579 (2001). Zbl 0992.65139, MR 1835471, 10.1007/s211-001-8015-y
Reference: [8] Vaněk, P., Brezina, M., Tezaur, R.: Two-grid method for linear elasticity on unstructured meshes.SIAM J. Sci. Comput. 21 (1999), 900-923. MR 1755171, 10.1137/S1064827596297112
Reference: [9] Vaněk, P., Mandel, J., Brezina, M.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems.Computing 56 (1996), 179-196. MR 1393006, 10.1007/BF02238511
Reference: [10] Vaněk, P., Mandel, J., Brezina, M.: Algebraic multigrid on unstructured meshes.UCD/CCM Report 34, Center for Computational Mathematics, University of Colorado at Denver, http://www.math.cudenver.edu/ccmreports/rep34.ps.gz, 1994.
.

Files

Files Size Format View
AplMat_60-2015-3_1.pdf 414.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo