Previous |  Up |  Next

Article

Title: New characterizations for weighted composition operator from Zygmund type spaces to Bloch type spaces (English)
Author: Guo, Xin-Cui
Author: Zhou, Ze-Hua
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 2
Year: 2015
Pages: 331-346
Summary lang: English
.
Category: math
.
Summary: Let $u$ be a holomorphic function and $\varphi $ a holomorphic self-map of the open unit disk $\mathbb {D}$ in the complex plane. We provide new characterizations for the boundedness of the weighted composition operators $uC_{\varphi }$ from Zygmund type spaces to Bloch type spaces in $\mathbb {D}$ in terms of $u$, $ \varphi $, their derivatives, and $\varphi ^n$, the $n$-th power of $\varphi $. Moreover, we obtain some similar estimates for the essential norms of the operators $uC_{\varphi }$, from which sufficient and necessary conditions of compactness of $uC_{\varphi }$ follows immediately. (English)
Keyword: weighted composition operator
Keyword: Zygmund type space
Keyword: Bloch type space
Keyword: essential norm
MSC: 26A24
MSC: 30H30
MSC: 47B33
MSC: 47B38
idZBL: Zbl 06486949
idMR: MR3360429
DOI: 10.1007/s10587-015-0178-1
.
Date available: 2015-06-16T17:39:29Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144272
.
Reference: [1] Aron, R., Lindström, M.: Spectra of weighted composition operators on weighted Banach spaces of analytic functions.Isr. J. Math. 141 (2004), 263-276. MR 2063037, 10.1007/BF02772223
Reference: [2] Bayart, F.: Parabolic composition operators on the ball.Adv. Math. 223 (2010), 1666-1705. Zbl 1189.47025, MR 2592506, 10.1016/j.aim.2009.10.002
Reference: [3] Bayart, F.: A class of linear fractional maps of the ball and their composition operators.Adv. Math. 209 (2007), 649-665. Zbl 1112.32002, MR 2296311, 10.1016/j.aim.2006.05.012
Reference: [4] Bayart, F., Charpentier, S.: Hyperbolic composition operators on the ball.Trans. Am. Math. Soc. 365 (2013), 911-938. Zbl 1269.47023, MR 2995378, 10.1090/S0002-9947-2012-05646-7
Reference: [5] Bonet, J., Lindström, M., Wolf, E.: Differences of composition operators between weighted Banach spaces of holomorphic functions.J. Aust. Math. Soc. 84 (2008), 9-20. MR 2469264, 10.1017/S144678870800013X
Reference: [6] Chen, C., Zhou, Z.-H.: Essential norms of the integral-type composition operators between Bloch-type spaces.Integral Transforms Spec. Funct. 25 (2014), 552-561. Zbl 1297.47024, MR 3195940, 10.1080/10652469.2014.887073
Reference: [7] Cowen, C. C., MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions.Studies in Advanced Mathematics CRC Press, Boca Raton (1995). Zbl 0873.47017, MR 1397026
Reference: [8] Esmaeili, K., Lindström, M.: Weighted composition operators between Zygmund type spaces and their essential norms.Integral Equations Oper. Theory 75 (2013), 473-490. Zbl 1306.47036, MR 3032664, 10.1007/s00020-013-2038-4
Reference: [9] Fang, Z.-S., Zhou, Z.-H.: New characterizations of the weighted composition operators between Bloch type spaces in the polydisk.Can. Math. Bull. 57 (2014), 794-802. MR 3270799, 10.4153/CMB-2013-043-4
Reference: [10] Fang, Z.-S., Zhou, Z.-H.: Essential norms of composition operators between Bloch type spaces in the polydisk.Arch. Math. 99 (2012), 547-556. Zbl 1263.47028, MR 3001558, 10.1007/s00013-012-0457-0
Reference: [11] Gorkin, P., MacCluer, B. D.: Essential norms of composition operators.Integral Equations Oper. Theory 48 (2004), 27-40. Zbl 1065.47027, MR 2029942, 10.1007/s00020-002-1203-y
Reference: [12] Hyvärinen, O., Kemppainen, M., Lindström, M., Rautio, A., Saukko, E.: The essential norm of weighted composition operators on weighted Banach spaces of analytic functions.Integral Equations Oper. Theory 72 (2012), 151-157. Zbl 1252.47026, MR 2872471, 10.1007/s00020-011-1919-7
Reference: [13] Hyvärinen, O., Lindström, M.: Estimates of essential norms of weighted composition operators between Bloch-type spaces.J. Math. Anal. Appl. 393 (2012), 38-44. Zbl 1267.47040, MR 2921646, 10.1016/j.jmaa.2012.03.059
Reference: [14] Li, S., Stević, S.: Weighted composition operators from Zygmund spaces into Bloch spaces.Appl. Math. Comput. 206 (2008), 825-831. Zbl 1215.47022, MR 2483058, 10.1016/j.amc.2008.10.006
Reference: [15] Liang, Y.-X., Zhou, Z.-H.: New estimate of essential norm of composition followed by differentiation between Bloch-type spaces.Banach J. Math. Anal. 8 (2014), 118-137. MR 3161687, 10.15352/bjma/1381782092
Reference: [16] Liang, Y.-X., Zhou, Z.-H.: Essential norm of product of differentiation and composition operators between Bloch-type spaces.Arch. Math. 100 (2013), 347-360. MR 3044119, 10.1007/s00013-013-0499-y
Reference: [17] Liang, Y.-X., Zhou, Z.-H.: Estimates of essential norms of weighted composition operator from Bloch type spaces to Zygmund type spaces, arXiv:1401.0031v1 [math.FA], 2013.. MR 3044119
Reference: [18] MacCluer, B. D., Zhao, R.: Essential norms of weighted composition operators between Bloch-type spaces.Rocky Mt. J. Math. 33 (2003), 1437-1458. Zbl 1061.30023, MR 2052498, 10.1216/rmjm/1181075473
Reference: [19] Manhas, J. S., Zhao, R.: New estimates of essential norms of weighted composition operators between Bloch type spaces.J. Math. Anal. Appl. 389 (2012), 32-47. Zbl 1267.47042, MR 2876478, 10.1016/j.jmaa.2011.11.039
Reference: [20] Montes-Rodríguez, A.: Weighted composition operators on weighted Banach spaces of analytic functions.J. Lond. Math. Soc., II. Ser. 61 (2000), 872-884. Zbl 0959.47016, MR 1766111, 10.1112/S0024610700008875
Reference: [21] Shapiro, J. H.: Composition Operators and Classical Function Theory.Universitext: Tracts in Mathematics Springer, New York (1993). Zbl 0791.30033, MR 1237406
Reference: [22] Song, X.-J., Zhou, Z.-H.: Differences of weighted composition operators from Bloch space to $H^\infty$ on the unit ball.J. Math. Anal. Appl. 401 (2013), 447-457. Zbl 1259.47029, MR 3011286, 10.1016/j.jmaa.2012.12.030
Reference: [23] Stević, S.: Essential norms of weighted composition operators from the $\alpha$-Bloch space to a weighted-type space on the unit ball.Abstr. Appl. Anal. 2008 (2008), Article ID 279691, 11 pages. Zbl 1160.32011, MR 2453144
Reference: [24] Stević, S., Chen, R., Zhou, Z.: Weighted composition operators between Bloch-type spaces in the polydisc.Sb. Math. 201 (2010), 289-319 translation from Mat. Sb. 201 (2010), 131-160 Russian. Zbl 1250.47029, MR 2656326, 10.1070/SM2010v201n02ABEH004073
Reference: [25] Wulan, H., Zheng, D., Zhu, K.: Composition operators on BMOA and the Bloch space.Proc. Am. Math. Soc. 137 (2009), 3861-3868. Zbl 1194.47038, MR 2529895, 10.1090/S0002-9939-09-09961-4
Reference: [26] Ye, S., Hu, Q.: Weighted composition operators on the Zygmund space.Abstr. Appl. Anal. 2012 (2012), Article ID 462482, 18 pages. Zbl 1277.47038, MR 2935151
Reference: [27] Zeng, H.-G., Zhou, Z. H.: Essential norm estimate of a composition operator between Bloch-type spaces in the unit ball.Rocky Mt. J. Math. 42 (2012), 1049-1071. Zbl 1268.47035, MR 2966485, 10.1216/RMJ-2012-42-3-1049
Reference: [28] Zhao, R.: Essential norms of composition operators between Bloch type spaces.Proc. Am. Math. Soc. 138 (2010), 2537-2546. Zbl 1190.47028, MR 2607883, 10.1090/S0002-9939-10-10285-8
Reference: [29] Zhou, Z.-H., Chen, R.-Y.: Weighted composition operators from $F(p, q, s) $ to Bloch type spaces on the unit ball.Int. J. Math. 19 (2008), 899-926. Zbl 1163.47021, MR 2446507, 10.1142/S0129167X08004984
Reference: [30] Zhou, Z.-H., Liang, Y.-X.: Differences of weighted composition operators from Hardy space to weighted-type spaces on the unit ball.Czech. Math. J. 62 (2012), 695-708. Zbl 1258.47051, MR 2984629, 10.1007/s10587-012-0040-7
Reference: [31] Zhou, Z.-H., Liang, Y.-X., Dong, X.-T.: Weighted composition operators between weighted-type space and Hardy space on the unit ball.Ann. Pol. Math. 104 (2012), 309-319. MR 2914538, 10.4064/ap104-3-7
Reference: [32] Zhou, Z., Shi, J.: Compactness of composition operators on the Bloch space in classical bounded symmetric domains.Mich. Math. J. 50 (2002), 381-405. Zbl 1044.47021, MR 1914071, 10.1307/mmj/1028575740
Reference: [33] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball.Graduate Texts in Mathematics 226 Springer, New York (2005). Zbl 1067.32005, MR 2115155
Reference: [34] Zhu, K.: Bloch type spaces of analytic functions.Rocky Mt. J. Math. 23 (1993), 1143-1177. Zbl 0787.30019, MR 1245472, 10.1216/rmjm/1181072549
Reference: [35] Zhu, K.: Operator Theory in Function Spaces.Pure and Applied Mathematics 139 Marcel Dekker, New York (1990). Zbl 0706.47019, MR 1074007
.

Files

Files Size Format View
CzechMathJ_65-2015-2_4.pdf 281.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo