Title:
|
The basic construction from the conditional expectation on the quantum double of a finite group (English) |
Author:
|
Xin, Qiaoling |
Author:
|
Jiang, Lining |
Author:
|
Ma, Zhenhua |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
65 |
Issue:
|
2 |
Year:
|
2015 |
Pages:
|
347-359 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $G$ be a finite group and $H$ a subgroup. Denote by $D(G;H)$ (or $D(G)$) the crossed product of $C(G)$ and $\Bbb {C}H$ (or $\Bbb {C}G$) with respect to the adjoint action of the latter on the former. Consider the algebra $\langle D(G), e\rangle $ generated by $D(G)$ and $e$, where we regard $E$ as an idempotent operator $e$ on $D(G)$ for a certain conditional expectation $E$ of $D(G)$ onto $D(G;H)$. Let us call $\langle D(G), e\rangle $ the basic construction from the conditional expectation $E\colon D(G)\rightarrow D(G;H)$. The paper constructs a crossed product algebra $C(G/H\times G)\rtimes \Bbb {C}G$, and proves that there is an algebra isomorphism between $\langle D(G),e\rangle $ and $C(G/H\times G)\rtimes \Bbb {C}G$. (English) |
Keyword:
|
conditional expectation |
Keyword:
|
basic construction |
Keyword:
|
quantum double |
Keyword:
|
quasi-basis |
MSC:
|
16S35 |
MSC:
|
16S99 |
MSC:
|
16W22 |
MSC:
|
20D99 |
idZBL:
|
Zbl 06486950 |
idMR:
|
MR3360430 |
DOI:
|
10.1007/s10587-015-0179-0 |
. |
Date available:
|
2015-06-16T17:40:58Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144273 |
. |
Reference:
|
[1] Bántay, P.: Orbifolds and Hopf algebras.Phys. Lett., B 245 (1990), 477-479. MR 1070067, 10.1016/0370-2693(90)90676-W |
Reference:
|
[2] Bratteli, O., Robinson, D. W.: Operator Algebras and Quantum Statistical Mechanics. 1. $C^*$- and $W^*$-Algebras, Symmetry Groups, Decomposition of States.Texts and Monographs in Physics Springer, New York (1987). Zbl 0905.46046, MR 0887100 |
Reference:
|
[3] Dancer, K. A., Isac, P. S., Links, J.: Representations of the quantum doubles of finite group algebras and spectral parameter dependent solutions of the Yang-Baxter equation.J. Math. Phys. 47 (2006), 103511, 18 pages. Zbl 1112.17016, MR 2268877, 10.1063/1.2359575 |
Reference:
|
[4] Jiang, L.: Towards a quantum Galois theory for quantum double algebras of finite groups.Proc. Am. Math. Soc. 138 (2010), 2793-2801. Zbl 1215.16020, MR 2644893, 10.1090/S0002-9939-10-10315-3 |
Reference:
|
[5] Jiang, L.: $C^*$-index of observable algebras in $G$-spin model.Sci. China, Ser. A 48 (2005), 57-66. Zbl 1177.82024, MR 2156615, 10.1360/03YS0119 |
Reference:
|
[6] Jiang, L., Zhu, G.: $C^*$-index in double algebra of finite group.Trans. Beijing Inst. Technol. 23 (2003), 147-148 Chinese. Zbl 1084.46044, MR 1976172 |
Reference:
|
[7] Jones, V. F. R.: Subfactors and Knots.Expository lectures from the CBMS regional conference, Annapolis, USA, 1988. Regional Conference Series in Mathematics 80 AMS, Providence (1991). Zbl 0743.46058, MR 1134131 |
Reference:
|
[8] Jones, V. F. R.: Index for subfactors.Invent. Math. 72 (1983), 1-25. Zbl 0508.46040, MR 0696688, 10.1007/BF01389127 |
Reference:
|
[9] Kassel, C.: Quantum Groups.Graduate Texts in Mathematics 155 Springer, Berlin (1995). Zbl 0808.17003, MR 1321145 |
Reference:
|
[10] Kawahigashi, Y., Longo, R.: Classification of local conformal nets. Case $c<1$.Ann. Math. 160 (2004), 493-522. Zbl 1083.46038, MR 2123931, 10.4007/annals.2004.160.493 |
Reference:
|
[11] Kosaki, H.: Extension of Jones' theory on index to arbitrary factors.J. Funct. Anal. 66 (1986), 123-140. MR 0829381, 10.1016/0022-1236(86)90085-6 |
Reference:
|
[12] Longo, R.: Index of subfactors and statistics of quantum fields. II. Correspondences, braid group statistics and Jones polynomial.Commun. Math. Phys. 130 (1990), 285-309. Zbl 0705.46038, MR 1059320, 10.1007/BF02473354 |
Reference:
|
[13] Longo, R.: Index of subfactors and statistics of quantum fields. I.Commun. Math. Phys. 126 (1989), 217-247. Zbl 0682.46045, MR 1027496, 10.1007/BF02125124 |
Reference:
|
[14] Radford, D. E.: Minimal quasitriangular Hopf algebras.J. Algebra 157 (1993), 285-315. Zbl 0787.16028, MR 1220770, 10.1006/jabr.1993.1102 |
Reference:
|
[15] Sweedler, M. E.: Hopf Algebras.Mathematics Lecture Note Series W. A. Benjamin, New York (1969). Zbl 0203.31601, MR 0252485 |
Reference:
|
[16] Watatani, Y.: Index for $C^*$-subalgebras.Mem. Am. Math. Soc. 83 (1990). MR 0996807 |
. |