Previous |  Up |  Next

Article

Title: The basic construction from the conditional expectation on the quantum double of a finite group (English)
Author: Xin, Qiaoling
Author: Jiang, Lining
Author: Ma, Zhenhua
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 2
Year: 2015
Pages: 347-359
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a finite group and $H$ a subgroup. Denote by $D(G;H)$ (or $D(G)$) the crossed product of $C(G)$ and $\Bbb {C}H$ (or $\Bbb {C}G$) with respect to the adjoint action of the latter on the former. Consider the algebra $\langle D(G), e\rangle $ generated by $D(G)$ and $e$, where we regard $E$ as an idempotent operator $e$ on $D(G)$ for a certain conditional expectation $E$ of $D(G)$ onto $D(G;H)$. Let us call $\langle D(G), e\rangle $ the basic construction from the conditional expectation $E\colon D(G)\rightarrow D(G;H)$. The paper constructs a crossed product algebra $C(G/H\times G)\rtimes \Bbb {C}G$, and proves that there is an algebra isomorphism between $\langle D(G),e\rangle $ and $C(G/H\times G)\rtimes \Bbb {C}G$. (English)
Keyword: conditional expectation
Keyword: basic construction
Keyword: quantum double
Keyword: quasi-basis
MSC: 16S35
MSC: 16S99
MSC: 16W22
MSC: 20D99
idZBL: Zbl 06486950
idMR: MR3360430
DOI: 10.1007/s10587-015-0179-0
.
Date available: 2015-06-16T17:40:58Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144273
.
Reference: [1] Bántay, P.: Orbifolds and Hopf algebras.Phys. Lett., B 245 (1990), 477-479. MR 1070067, 10.1016/0370-2693(90)90676-W
Reference: [2] Bratteli, O., Robinson, D. W.: Operator Algebras and Quantum Statistical Mechanics. 1. $C^*$- and $W^*$-Algebras, Symmetry Groups, Decomposition of States.Texts and Monographs in Physics Springer, New York (1987). Zbl 0905.46046, MR 0887100
Reference: [3] Dancer, K. A., Isac, P. S., Links, J.: Representations of the quantum doubles of finite group algebras and spectral parameter dependent solutions of the Yang-Baxter equation.J. Math. Phys. 47 (2006), 103511, 18 pages. Zbl 1112.17016, MR 2268877, 10.1063/1.2359575
Reference: [4] Jiang, L.: Towards a quantum Galois theory for quantum double algebras of finite groups.Proc. Am. Math. Soc. 138 (2010), 2793-2801. Zbl 1215.16020, MR 2644893, 10.1090/S0002-9939-10-10315-3
Reference: [5] Jiang, L.: $C^*$-index of observable algebras in $G$-spin model.Sci. China, Ser. A 48 (2005), 57-66. Zbl 1177.82024, MR 2156615, 10.1360/03YS0119
Reference: [6] Jiang, L., Zhu, G.: $C^*$-index in double algebra of finite group.Trans. Beijing Inst. Technol. 23 (2003), 147-148 Chinese. Zbl 1084.46044, MR 1976172
Reference: [7] Jones, V. F. R.: Subfactors and Knots.Expository lectures from the CBMS regional conference, Annapolis, USA, 1988. Regional Conference Series in Mathematics 80 AMS, Providence (1991). Zbl 0743.46058, MR 1134131
Reference: [8] Jones, V. F. R.: Index for subfactors.Invent. Math. 72 (1983), 1-25. Zbl 0508.46040, MR 0696688, 10.1007/BF01389127
Reference: [9] Kassel, C.: Quantum Groups.Graduate Texts in Mathematics 155 Springer, Berlin (1995). Zbl 0808.17003, MR 1321145
Reference: [10] Kawahigashi, Y., Longo, R.: Classification of local conformal nets. Case $c<1$.Ann. Math. 160 (2004), 493-522. Zbl 1083.46038, MR 2123931, 10.4007/annals.2004.160.493
Reference: [11] Kosaki, H.: Extension of Jones' theory on index to arbitrary factors.J. Funct. Anal. 66 (1986), 123-140. MR 0829381, 10.1016/0022-1236(86)90085-6
Reference: [12] Longo, R.: Index of subfactors and statistics of quantum fields. II. Correspondences, braid group statistics and Jones polynomial.Commun. Math. Phys. 130 (1990), 285-309. Zbl 0705.46038, MR 1059320, 10.1007/BF02473354
Reference: [13] Longo, R.: Index of subfactors and statistics of quantum fields. I.Commun. Math. Phys. 126 (1989), 217-247. Zbl 0682.46045, MR 1027496, 10.1007/BF02125124
Reference: [14] Radford, D. E.: Minimal quasitriangular Hopf algebras.J. Algebra 157 (1993), 285-315. Zbl 0787.16028, MR 1220770, 10.1006/jabr.1993.1102
Reference: [15] Sweedler, M. E.: Hopf Algebras.Mathematics Lecture Note Series W. A. Benjamin, New York (1969). Zbl 0203.31601, MR 0252485
Reference: [16] Watatani, Y.: Index for $C^*$-subalgebras.Mem. Am. Math. Soc. 83 (1990). MR 0996807
.

Files

Files Size Format View
CzechMathJ_65-2015-2_5.pdf 277.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo