Previous |  Up |  Next

Article

Title: Evolution equations governed by Lipschitz continuous non-autonomous forms (English)
Author: Sani, Ahmed
Author: Laasri, Hafida
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 2
Year: 2015
Pages: 475-491
Summary lang: English
.
Category: math
.
Summary: We prove $L^2$-maximal regularity of the linear non-autonomous evolutionary Cauchy \rlap {problem} $$ \dot {u} (t)+A(t)u(t)=f(t) \quad \text {for a.e.\ } t\in [0,T],\quad u(0)=u_0, $$ where the operator $A(t)$ arises from a time depending sesquilinear form $\mathfrak {a}(t,\cdot ,\cdot )$ on a Hilbert space $H$ with constant domain $V.$ We prove the maximal regularity in $H$ when these forms are time Lipschitz continuous. We proceed by approximating the problem using the frozen coefficient method developed by El-Mennaoui, Keyantuo, Laasri (2011), El-Mennaoui, Laasri (2013), and Laasri (2012). As a consequence, we obtain an invariance criterion for convex and closed sets of $H.$ (English)
Keyword: sesquilinear form
Keyword: non-autonomous evolution equation
Keyword: maximal regularity
Keyword: convex set
MSC: 35B65
MSC: 35K45
MSC: 35K90
MSC: 47D06
idZBL: Zbl 06486959
idMR: MR3360439
DOI: 10.1007/s10587-015-0188-z
.
Date available: 2015-06-16T17:58:36Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144282
.
Reference: [1] Arendt, W., Batty, C. J. K., Hieber, M., Neubrander, F.: Vector-valued Laplace Transforms and Cauchy Problems.Monographs in Mathematics 96 Birkhäuser, Basel (2011). Zbl 1226.34002, MR 2798103
Reference: [2] Arendt, W., Chill, R.: Global existence for quasilinear diffusion equations in isotropic nondivergence form.Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 9 (2010), 523-539. Zbl 1223.35202, MR 2722654
Reference: [3] Arendt, W., Dier, D., Laasri, H., Ouhabaz, E. M.: Maximal regularity for evolution equations governed by non-autonomous forms.Adv. Differ. Equ. 19 (2014), 1043-1066. MR 3250762
Reference: [4] Arendt, W., Dier, D., Ouhabaz, E. M.: Invariance of convex sets for non-autonomous evolution equations governed by forms.J. Lond. Math. Soc., II. Ser. 89 (2014), 903-916. MR 3217655, 10.1112/jlms/jdt082
Reference: [5] Bardos, C.: A regularity theorem for parabolic equations.J. Funct. Anal. 7 (1971), 311-322. Zbl 0214.12302, MR 0283433, 10.1016/0022-1236(71)90038-3
Reference: [6] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations.Universitext. Springer New York (2011). Zbl 1220.46002, MR 2759829
Reference: [7] Dautray, R., Lions, J.-L.: Analyse mathématique et calcul numérique pour les sciences et les techniques. Volume 8: Évolution: semi-groupe, variationnel.Collection Enseignement Masson, Paris French (1988). Zbl 0749.35004, MR 1016604
Reference: [8] El-Mennaoui, O., Keyantuo, V., Laasri, H.: Infinitesimal product of semigroups.Ulmer Seminare. Heft 16 (2011), 219-230.
Reference: [9] Haak, B., Maati, O. El: Maximal regularity for non-autonomous evolution equations.Version available at: http://arxiv.org/abs/1402.1136v1.
Reference: [10] Kato, T.: Perturbation Theory for Linear Operators.Classics in Mathematics Springer, Berlin (1992). MR 1335452
Reference: [11] Laasri, H.: Problèmes d'évolution et intégrales produits dans les espaces de Banach.Thèse de Doctorat Faculté des science, Agadir (2012), French DOI 10.1007/s00208-015-1199-7. 10.1007/s00208-015-1199-7
Reference: [12] Laasri, H., El-Mennaoui, O.: Stability for non-autonomous linear evolution equations with $L^p$-maximal regularity.Czech. Math. J. 63 887-908 (2013). MR 3165503, 10.1007/s10587-013-0060-y
Reference: [13] Lions, J. L.: Équations différentielles opérationnelles et problèmes aux limites.Die Grundlehren der mathematischen Wissenschaften 111 Springer, Berlin French (1961). Zbl 0098.31101, MR 0153974
Reference: [14] Ouhabaz, E. M.: Analysis of Heat Equations on Domains.London Mathematical Society Monographs Series 31 Princeton University Press, Princeton (2005). Zbl 1082.35003, MR 2124040
Reference: [15] Ouhabaz, E. M.: Invariance of closed convex sets and domination criteria for semigroups.Potential Anal. 5 (1996), 611-625. Zbl 0868.47029, MR 1437587, 10.1007/BF00275797
Reference: [16] Ouhabaz, E. M., Spina, C.: Maximal regularity for non-autonomous Schrödinger type equations.J. Differ. Equations 248 (2010), 1668-1683. Zbl 1190.35132, MR 2593603, 10.1016/j.jde.2009.10.004
Reference: [17] Showalter, R. E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations.Mathematical Surveys and Monographs 49, AMS Providence (1997). Zbl 0870.35004, MR 1422252
Reference: [18] Slavík, A.: Product Integration, Its History and Applications.Dějiny Matematiky/History of Mathematics 29; Nečas Center for Mathematical Modeling Lecture Notes 1 Matfyzpress, Praha (2007). Zbl 1216.28001, MR 2917851
Reference: [19] Tanabe, H.: Equations of Evolution.Monographs and Studies in Mathematics 6 Pitman, London (1979). Zbl 0417.35003, MR 0533824
Reference: [20] Thomaschewski, S.: Form Methods for Autonomous and Non-Autonomous Cauchy Problems.PhD Thesis, Universität Ulm (2003).
.

Files

Files Size Format View
CzechMathJ_65-2015-2_14.pdf 307.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo