Title:
|
Evolution equations governed by Lipschitz continuous non-autonomous forms (English) |
Author:
|
Sani, Ahmed |
Author:
|
Laasri, Hafida |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
65 |
Issue:
|
2 |
Year:
|
2015 |
Pages:
|
475-491 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We prove $L^2$-maximal regularity of the linear non-autonomous evolutionary Cauchy \rlap {problem} $$ \dot {u} (t)+A(t)u(t)=f(t) \quad \text {for a.e.\ } t\in [0,T],\quad u(0)=u_0, $$ where the operator $A(t)$ arises from a time depending sesquilinear form $\mathfrak {a}(t,\cdot ,\cdot )$ on a Hilbert space $H$ with constant domain $V.$ We prove the maximal regularity in $H$ when these forms are time Lipschitz continuous. We proceed by approximating the problem using the frozen coefficient method developed by El-Mennaoui, Keyantuo, Laasri (2011), El-Mennaoui, Laasri (2013), and Laasri (2012). As a consequence, we obtain an invariance criterion for convex and closed sets of $H.$ (English) |
Keyword:
|
sesquilinear form |
Keyword:
|
non-autonomous evolution equation |
Keyword:
|
maximal regularity |
Keyword:
|
convex set |
MSC:
|
35B65 |
MSC:
|
35K45 |
MSC:
|
35K90 |
MSC:
|
47D06 |
idZBL:
|
Zbl 06486959 |
idMR:
|
MR3360439 |
DOI:
|
10.1007/s10587-015-0188-z |
. |
Date available:
|
2015-06-16T17:58:36Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144282 |
. |
Reference:
|
[1] Arendt, W., Batty, C. J. K., Hieber, M., Neubrander, F.: Vector-valued Laplace Transforms and Cauchy Problems.Monographs in Mathematics 96 Birkhäuser, Basel (2011). Zbl 1226.34002, MR 2798103 |
Reference:
|
[2] Arendt, W., Chill, R.: Global existence for quasilinear diffusion equations in isotropic nondivergence form.Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 9 (2010), 523-539. Zbl 1223.35202, MR 2722654 |
Reference:
|
[3] Arendt, W., Dier, D., Laasri, H., Ouhabaz, E. M.: Maximal regularity for evolution equations governed by non-autonomous forms.Adv. Differ. Equ. 19 (2014), 1043-1066. MR 3250762 |
Reference:
|
[4] Arendt, W., Dier, D., Ouhabaz, E. M.: Invariance of convex sets for non-autonomous evolution equations governed by forms.J. Lond. Math. Soc., II. Ser. 89 (2014), 903-916. MR 3217655, 10.1112/jlms/jdt082 |
Reference:
|
[5] Bardos, C.: A regularity theorem for parabolic equations.J. Funct. Anal. 7 (1971), 311-322. Zbl 0214.12302, MR 0283433, 10.1016/0022-1236(71)90038-3 |
Reference:
|
[6] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations.Universitext. Springer New York (2011). Zbl 1220.46002, MR 2759829 |
Reference:
|
[7] Dautray, R., Lions, J.-L.: Analyse mathématique et calcul numérique pour les sciences et les techniques. Volume 8: Évolution: semi-groupe, variationnel.Collection Enseignement Masson, Paris French (1988). Zbl 0749.35004, MR 1016604 |
Reference:
|
[8] El-Mennaoui, O., Keyantuo, V., Laasri, H.: Infinitesimal product of semigroups.Ulmer Seminare. Heft 16 (2011), 219-230. |
Reference:
|
[9] Haak, B., Maati, O. El: Maximal regularity for non-autonomous evolution equations.Version available at: http://arxiv.org/abs/1402.1136v1. |
Reference:
|
[10] Kato, T.: Perturbation Theory for Linear Operators.Classics in Mathematics Springer, Berlin (1992). MR 1335452 |
Reference:
|
[11] Laasri, H.: Problèmes d'évolution et intégrales produits dans les espaces de Banach.Thèse de Doctorat Faculté des science, Agadir (2012), French DOI 10.1007/s00208-015-1199-7. 10.1007/s00208-015-1199-7 |
Reference:
|
[12] Laasri, H., El-Mennaoui, O.: Stability for non-autonomous linear evolution equations with $L^p$-maximal regularity.Czech. Math. J. 63 887-908 (2013). MR 3165503, 10.1007/s10587-013-0060-y |
Reference:
|
[13] Lions, J. L.: Équations différentielles opérationnelles et problèmes aux limites.Die Grundlehren der mathematischen Wissenschaften 111 Springer, Berlin French (1961). Zbl 0098.31101, MR 0153974 |
Reference:
|
[14] Ouhabaz, E. M.: Analysis of Heat Equations on Domains.London Mathematical Society Monographs Series 31 Princeton University Press, Princeton (2005). Zbl 1082.35003, MR 2124040 |
Reference:
|
[15] Ouhabaz, E. M.: Invariance of closed convex sets and domination criteria for semigroups.Potential Anal. 5 (1996), 611-625. Zbl 0868.47029, MR 1437587, 10.1007/BF00275797 |
Reference:
|
[16] Ouhabaz, E. M., Spina, C.: Maximal regularity for non-autonomous Schrödinger type equations.J. Differ. Equations 248 (2010), 1668-1683. Zbl 1190.35132, MR 2593603, 10.1016/j.jde.2009.10.004 |
Reference:
|
[17] Showalter, R. E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations.Mathematical Surveys and Monographs 49, AMS Providence (1997). Zbl 0870.35004, MR 1422252 |
Reference:
|
[18] Slavík, A.: Product Integration, Its History and Applications.Dějiny Matematiky/History of Mathematics 29; Nečas Center for Mathematical Modeling Lecture Notes 1 Matfyzpress, Praha (2007). Zbl 1216.28001, MR 2917851 |
Reference:
|
[19] Tanabe, H.: Equations of Evolution.Monographs and Studies in Mathematics 6 Pitman, London (1979). Zbl 0417.35003, MR 0533824 |
Reference:
|
[20] Thomaschewski, S.: Form Methods for Autonomous and Non-Autonomous Cauchy Problems.PhD Thesis, Universität Ulm (2003). |
. |