Previous |  Up |  Next

Article

Title: Musielak-Orlicz-Sobolev spaces on metric measure spaces (English)
Author: Ohno, Takao
Author: Shimomura, Tetsu
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 2
Year: 2015
Pages: 435-474
Summary lang: English
.
Category: math
.
Summary: Our aim in this paper is to study Musielak-Orlicz-Sobolev spaces on metric measure spaces. We consider a Hajłasz-type condition and a Newtonian condition. We prove that Lipschitz continuous functions are dense, as well as other basic properties. We study the relationship between these spaces, and discuss the Lebesgue point theorem in these spaces. We also deal with the boundedness of the Hardy-Littlewood maximal operator on Musielak-Orlicz spaces. As an application of the boundedness of the Hardy-Littlewood maximal operator, we establish a generalization of Sobolev's inequality for Sobolev functions in Musielak-Orlicz-Hajłasz-Sobolev spaces. (English)
Keyword: Sobolev space
Keyword: metric measure space
Keyword: Sobolev's inequality
Keyword: Hajłasz-Sobolev space
Keyword: Newton-Sobolev space
Keyword: Musielak-Orlicz space
Keyword: capacity
Keyword: variable exponent
MSC: 31B15
MSC: 31E05
MSC: 46E35
idZBL: Zbl 06486958
idMR: MR3360438
DOI: 10.1007/s10587-015-0187-0
.
Date available: 2015-06-16T17:56:36Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144281
.
Reference: [1] Adamowicz, T., Harjulehto, P., Hästö, P.: Maximal operator in variable exponent Lebesgue spaces on unbounded quasimetric measure spaces.Math. Scand. 116 (2015), 5-22. MR 3322604, 10.7146/math.scand.a-20448
Reference: [2] Adams, D. R., Hedberg, L. I.: Function Spaces and Potential Theory.Fundamental Principles of Mathematical Sciences 314 Springer, Berlin (1996). MR 1411441
Reference: [3] Adams, R. A.: Sobolev Spaces.Pure and Applied Mathematics 65 Academic Press, New York (1975). Zbl 0314.46030, MR 0450957
Reference: [4] ssaoui, N. Aï: Another extension of Orlicz-Sobolev spaces to metric spaces.Abstr. Appl. Anal. 2004 (2004), 1-26. MR 2058790
Reference: [5] ssaoui, N. Aï: Strongly nonlinear potential theory of metric spaces.Abstr. Appl. Anal. 7 (2002), 357-374. MR 1939129, 10.1155/S1085337502203024
Reference: [6] Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces.EMS Tracts in Mathematics 17 European Mathematical Society, Zürich (2011). Zbl 1231.31001, MR 2867756
Reference: [7] Bojarski, B., Hajłasz, P.: Pointwise inequalities for Sobolev functions and some applications.Stud. Math. 106 (1993), 77-92. Zbl 0810.46030, MR 1226425
Reference: [8] Cianchi, A.: Strong and weak type inequalities for some classical operators in Orlicz spaces.J. Lond. Math. Soc., II. Ser. 60 (1999), 187-202. Zbl 0940.46015, MR 1721824, 10.1112/S0024610799007711
Reference: [9] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces.Foundations and Harmonic Analysis Applied and Numerical Harmonic Analysis Birkhäuser/Springer, New York (2013). Zbl 1268.46002, MR 3026953
Reference: [10] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: Corrections to: ``The maximal function on variable {$L^p$} spaces''.Ann. Acad. Sci. Fenn., Math. 29 (2004), 247-249 Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. MR 2041952
Reference: [11] Diening, L.: Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces.Bull. Sci. Math. 129 (2005), 657-700. MR 2166733, 10.1016/j.bulsci.2003.10.003
Reference: [12] Diening, L.: Maximal function on generalized Lebesgue spaces {$L^{p(\cdot)}$}.Math. Inequal. Appl. 7 (2004), 245-253. Zbl 1071.42014, MR 2057643
Reference: [13] Diening, L.: Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces {$L^{p(\cdot)}$} and {$W^{k,p(\cdot)}$}.Math. Nachr. 268 (2004), 31-43. Zbl 1065.46024, MR 2054530, 10.1002/mana.200310157
Reference: [14] Diening, L., Harjulehto, P., Hästö, P., R\ružička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017 Springer, Berlin (2011). MR 2790542
Reference: [15] Evans, L. C., Gariepy, R. F.: Measure Theory and Fine Properties of Functions.Studies in Advanced Mathematics CRC Press, Boca Raton (1992). Zbl 0804.28001, MR 1158660
Reference: [16] Fan, X.: Differential equations of divergence form in Musielak-Sobolev spaces and a sub-supersolution method.J. Math. Anal. Appl. 386 (2012), 593-604. Zbl 1270.35156, MR 2834769, 10.1016/j.jmaa.2011.08.022
Reference: [17] Fan, X., Guan, C.-X.: Uniform convexity of Musielak-Orlicz-Sobolev spaces and applications.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 163-175. Zbl 1198.46010, MR 2645841, 10.1016/j.na.2010.03.010
Reference: [18] Franchi, B., Lu, G., Wheeden, R. L.: A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type.Int. Math. Res. Not. 1996 (1996), 1-14. Zbl 0856.43006, MR 1383947, 10.1155/S1073792896000013
Reference: [19] Futamura, T., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T.: Variable exponent spaces on metric measure spaces.More Progresses in Analysis. Proceedings of the 5th International ISAAC Congress, Catania, Italy, 2005 World Scientific Hackensack (2009), 107-121 H. G. W. Begehr et al. Zbl 1189.46027
Reference: [20] Futamura, T., Mizuta, Y., Shimomura, T.: Sobolev embeddings for variable exponent Riesz potentials on metric spaces.Ann. Acad. Sci. Fenn., Math. 31 (2006), 495-522. Zbl 1100.31002, MR 2248828
Reference: [21] Hajłasz, P.: Sobolev spaces on an arbitrary metric space.Potential Anal. 5 (1996), 403-415. Zbl 0859.46022
Reference: [22] Hajłasz, P., Kinnunen, J.: Hölder quasicontinuity of Sobolev functions on metric spaces.Rev. Mat. Iberoam. 14 (1998), 601-622. Zbl 1155.46306, MR 1681586, 10.4171/RMI/246
Reference: [23] Hajłasz, P., Koskela, P.: Sobolev met Poincaré.Mem. Am. Math. Soc. 145 (2000), no. 688, 101 pages. Zbl 0954.46022, MR 1683160
Reference: [24] Harjulehto, P., Hästö, P.: A capacity approach to the Poincaré inequality and Sobolev imbeddings in variable exponent Sobolev spaces.Rev. Mat. Complut. 17 (2004), 129-146. Zbl 1072.46021, MR 2063945, 10.5209/rev_REMA.2004.v17.n1.16790
Reference: [25] Harjulehto, P., Hästö, P.: Lebesgue points in variable exponent spaces.Ann. Acad. Sci. Fenn., Math. 29 (2004), 295-306. Zbl 1079.46022, MR 2097234
Reference: [26] Harjulehto, P., Hästö, P., Koskenoja, M., Varonen, S.: Sobolev capacity on the space {$W^{1,p(\cdot)}(\Bbb R^n)$}.J. Funct. Spaces Appl. 1 (2003), 17-33. MR 2011498
Reference: [27] Harjulehto, P., Hästö, P., Koskenoja, M.: Properties of capacities in variable exponent Sobolev spaces.J. Anal. Appl. 5 (2007), 71-92. Zbl 1143.31003, MR 2314780
Reference: [28] Harjulehto, P., Hästö, P., Latvala, V.: Sobolev embeddings in metric measure spaces with variable dimension.Math. Z. 254 (2006), 591-609. MR 2244368, 10.1007/s00209-006-0960-8
Reference: [29] Harjulehto, P., Hästö, P., Latvala, V.: Lebesgue points in variable exponent Sobolev spaces on metric measure spaces.Zb. Pr. Inst. Mat. NAN Ukr. 1 (2004), 87-99. Zbl 1199.46079, MR 2097234
Reference: [30] Harjulehto, P., Hästö, P., Martio, O.: Fuglede's theorem in variable exponent Sobolev space.Collect. Math. 55 (2004), 315-324. Zbl 1070.46023, MR 2099221
Reference: [31] Harjulehto, P., Hästö, P., Pere, M.: Variable exponent Sobolev spaces on metric measure spaces.Funct. Approximatio, Comment. Math. 36 (2006), 79-94. Zbl 1140.46013, MR 2296640, 10.7169/facm/1229616443
Reference: [32] Harjulehto, P., Hästö, P., Pere, M.: Variable exponent Lebesgue spaces on metric spaces: the Hardy-Littlewood maximal operator.Real Anal. Exch. 30 (2005), 87-104. Zbl 1072.42016, MR 2126796
Reference: [33] Heinonen, J.: Lectures on Analysis on Metric Spaces.Universitext Springer, New York (2001). Zbl 0985.46008, MR 1800917
Reference: [34] Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry.Acta Math. 181 (1998), 1-61. Zbl 0915.30018, MR 1654771, 10.1007/BF02392747
Reference: [35] Kinnunen, J.: The Hardy-Littlewood maximal function of a Sobolev function.Isr. J. Math. 100 (1997), 117-124. Zbl 0882.43003, MR 1469106, 10.1007/BF02773636
Reference: [36] Kinnunen, J., Latvala, V.: Lebesgue points for Sobolev functions on metric spaces.Rev. Mat. Iberoam. 18 (2002), 685-700. Zbl 1037.46031, MR 1954868, 10.4171/RMI/332
Reference: [37] Kinnunen, J., Martio, O.: Choquet property for the Sobolev capacity in metric spaces.Proceedings on Analysis and Geometry Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat. Novosibirsk (2000), 285-290 S. K. Vodop'yanov Russian. Zbl 0992.46023, MR 1847522
Reference: [38] Kinnunen, J., Martio, O.: The Sobolev capacity on metric spaces.Ann. Acad. Sci. Fenn., Math. 21 (1996), 367-382. Zbl 0859.46023, MR 1404091
Reference: [39] Kokilashvili, V., Samko, S.: Maximal and fractional operators in weighted {$L^{p(x)}$} spaces.Rev. Mat. Iberoam. 20 (2004), 493-515. Zbl 1099.42021, MR 2073129, 10.4171/RMI/398
Reference: [40] Kokilashvili, V., Samko, S.: On Sobolev theorem for Riesz-type potentials in Lebesgue spaces with variable exponent.Z. Anal. Anwend. 22 (2003), 889-910. Zbl 1040.42013, MR 2036935
Reference: [41] Lewis, J. L.: On very weak solutions of certain elliptic systems.Commun. Partial Differ. Equations 18 (1993), 1515-1537. Zbl 0796.35061, MR 1239922, 10.1080/03605309308820984
Reference: [42] Maeda, F.-Y., Mizuta, Y., Ohno, T.: Approximate identities and Young type inequalities in variable Lebesgue-Orlicz spaces {$L^{p(\cdot)}(\log L)^{q(\cdot)}$}.Ann. Acad. Sci. Fenn., Math. 35 (2010), 405-420. Zbl 1216.46025, MR 2731699, 10.5186/aasfm.2010.3526
Reference: [43] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Approximate identities and Young type inequalities in Musielak-Orlicz spaces.Czech. Math. J. 63 (2013), 933-948. MR 3165506, 10.1007/s10587-013-0063-8
Reference: [44] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces.Bull. Sci. Math. 137 (2013), 76-96. Zbl 1267.46045, MR 3007101, 10.1016/j.bulsci.2012.03.008
Reference: [45] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Mean continuity for potentials of functions in Musielak-Orlicz spaces.Potential Theory and Its Related Fields RIMS Kôkyûroku Bessatsu B43 Research Institute for Mathematical Sciences, Kyoto University, Kyoto (2013), 81-100 K. Hirata. Zbl 1303.46022, MR 3220454
Reference: [46] McShane, E. J.: Extension of range of functions.Bull. Am. Math. Soc. 40 (1934), 837-842. Zbl 0010.34606, MR 1562984, 10.1090/S0002-9904-1934-05978-0
Reference: [47] Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev's inequalities and vanishing integrability for Riesz potentials of functions in the generalized Lebesgue space {$L^{p(\cdot)}(\log L)^{q(\cdot)}$}.J. Math. Anal. Appl. 345 (2008), 70-85. Zbl 1153.31002, MR 2422635, 10.1016/j.jmaa.2008.03.067
Reference: [48] Mizuta, Y., Shimomura, T.: Continuity properties of Riesz potentials of Orlicz functions.Tohoku Math. J. (2) 61 (2009), 225-240. Zbl 1181.46026, MR 2541407, 10.2748/tmj/1245849445
Reference: [49] Mizuta, Y., Shimomura, T.: Continuity of Sobolev functions of variable exponent on metric spaces.Proc. Japan Acad., Ser. A 80 (2004), 96-99. Zbl 1072.46506, MR 2075449
Reference: [50] Musielak, J.: Orlicz Spaces and Modular Spaces.Lecture Notes in Mathematics 1034 Springer, Berlin (1983). Zbl 0557.46020, MR 0724434
Reference: [51] Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces.Rev. Mat. Iberoam. 16 (2000), 243-279. Zbl 0974.46038, MR 1809341, 10.4171/RMI/275
Reference: [52] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions.Princeton Mathematical Series 30 Princeton University Press, Princeton (1970). Zbl 0207.13501, MR 0290095
Reference: [53] Tuominen, H.: Orlicz-Sobolev spaces on metric measure spaces.Ann. Acad. Sci. Fenn. Math. Diss. (2004), 135 86 pages. Zbl 1068.46022, MR 2046571
Reference: [54] Ziemer, W. P.: Weakly Differentiable Functions.Sobolev Spaces and Functions of Bounded Variation Graduate Texts in Mathematics 120 Springer, Berlin (1989). Zbl 0692.46022, MR 1014685
.

Files

Files Size Format View
CzechMathJ_65-2015-2_13.pdf 436.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo