Previous |  Up |  Next

Article

Title: Nonempty intersection of longest paths in a graph with a small matching number (English)
Author: Chen, Fuyuan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 2
Year: 2015
Pages: 545-553
Summary lang: English
.
Category: math
.
Summary: A maximum matching of a graph $G$ is a matching of $G$ with the largest number of edges. The matching number of a graph $G$, denoted by $\alpha '(G)$, is the number of edges in a maximum matching of $G$. In 1966, Gallai conjectured that all the longest paths of a connected graph have a common vertex. Although this conjecture has been disproved, finding some nice classes of graphs that support this conjecture is still very meaningful and interesting. In this short note, we prove that Gallai's conjecture is true for every connected graph $G$ with $\alpha '(G)\leq 3$. (English)
Keyword: longest path
Keyword: matching number
MSC: 05C38
MSC: 05C70
MSC: 05C75
idZBL: Zbl 06486964
idMR: MR3360444
DOI: 10.1007/s10587-015-0193-2
.
Date available: 2015-06-16T18:05:53Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144287
.
Reference: [1] Balister, P. N., Győri, E., Lehel, J., Schelp, R. H.: Longest paths in circular arc graphs.Comb. Probab. Comput. 13 (2004), 311-317. Zbl 1051.05053, MR 2056401, 10.1017/S0963548304006145
Reference: [2] Bondy, J. A., Murty, U. S. R.: Graph Theory.Graduate Texts in Mathematics 244 Springer, Berlin (2008). Zbl 1134.05001, MR 2368647, 10.1007/978-1-84628-970-5_1
Reference: [3] Rezende, S. F. de, Fernandes, C. G., Martin, D. M., Wakabayashi, Y.: Intersecting longest paths.Discrete Math. 313 (2013), 1401-1408. Zbl 1279.05041, MR 3061125, 10.1016/j.disc.2013.02.016
Reference: [4] Ehrenmüller, J., Fernandes, C. G., Heise, C. G.: Nonempty intersection of longest paths in series-parallel graphs.Preprint 2013, arXiv:1310.1376v2.
Reference: [5] Gallai, T.: Problem 4.Theory of Graphs Proceedings of the Colloquium on Graph Theory, held at Tihany, Hungary, 1966 Academic Press, New York; Akadémiai Kiadó, Budapest (1968), P. Erdős et al. MR 0232693
Reference: [6] Harris, J. M., Hirst, J. L., Mossinghoff, M. J.: Combinatorics and Graph Theory.Undergraduate Texts in Mathematics Springer, New York (2008). Zbl 1170.05001, MR 2440898
Reference: [7] Klavžar, S., Petkovšek, M.: Graphs with nonempty intersection of longest paths.Ars Comb. 29 (1990), 43-52. Zbl 0714.05037, MR 1046093
Reference: [8] Shabbir, A., Zamfirescu, C. T., Zamfirescu, T. I.: Intersecting longest paths and longest cycles: A survey.Electron. J. Graph Theory Appl. (electronic only) 1 (2013), 56-76. Zbl 1306.05121, MR 3093252
Reference: [9] Voss, H.-J.: Cycles and Bridges in Graphs.Mathematics and Its Applications 49, East European Series Kluwer Academic Publishers, Dordrecht; VEB Deutscher Verlag der Wissenschaften, Berlin (1991). Zbl 0731.05031, MR 1131525
Reference: [10] Walther, H.: Über die Nichtexistenz eines Knotenpunktes, durch den alle längsten Wege eines Graphen gehen.J. Comb. Theory 6 German (1969), 1-6. Zbl 0184.27504, MR 0236054, 10.1016/S0021-9800(69)80098-0
Reference: [11] Walther, H., Voss, H.-J.: Über Kreise in Graphen.VEB Deutscher Verlag der Wissenschaften Berlin German (1974). Zbl 0288.05101
Reference: [12] West, D. B.: Open Problems---Graph Theory and Combinatorics, Hitting All Longest Paths.http://www.math.uiuc.edu/ west/openp/pathtran.html, accessed in January 2013.
Reference: [13] Zamfirescu, T.: On longest paths and circuits in graphs.Math. Scand. 38 (1976), 211-239. Zbl 0337.05127, MR 0429645, 10.7146/math.scand.a-11630
.

Files

Files Size Format View
CzechMathJ_65-2015-2_19.pdf 243.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo