Previous |  Up |  Next

Article

Title: Generalized madogram and pairwise dependence of maxima over two regions of a random field (English)
Author: Fonseca, Cecília
Author: Pereira, Luísa
Author: Ferreira, Helena
Author: Martins, Ana Paula
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 2
Year: 2015
Pages: 193-211
Summary lang: English
.
Category: math
.
Summary: Spatial environmental processes often exhibit dependence in their large values. In order to model such processes their dependence properties must be characterized and quantified. In this paper we introduce a measure that evaluates the dependence among extreme observations located in two disjoint sets of locations of $\mathbb{R}^2$. We compute the range of this new dependence measure, which extends the existing $\lambda$-madogram concept, and compare it with extremal coefficients, finding generalizations of the known relations in the pairwise approach. Estimators for this measure are introduced and asymptotic normality and strong consistency are shown. An application to the annual maxima precipitation in Portuguese regions is presented. (English)
Keyword: max-stable random field
Keyword: dependence coefficients
Keyword: extreme values
MSC: 60G60
MSC: 60G70
idZBL: Zbl 06487073
idMR: MR3350556
DOI: 10.14736/kyb-2015-2-0193
.
Date available: 2015-06-19T15:13:08Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144291
.
Reference: [1] Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of Extremes: Theory and Applications..John Wiley 2004. Zbl 1070.62036, MR 2108013, 10.1002/0470012382
Reference: [2] Cooley, D., Naveau, P., Poncet, P.: Variograms for spatial max-stable random fields..Dependence in Probability and Statistics 187 (2006), 373-390. Zbl 1110.62130, MR 2283264, 10.1007/0-387-36062-x_17
Reference: [3] Coles, S. G.: Regional modelling of extreme storms via max-stable processes..J. Roy. Statist. Soc. B 55 (1993), 797-816. Zbl 0781.60041, MR 1229882
Reference: [4] Haan, L. de: A spectral representation for max-stable proesses..Ann. Probab. 12 (1984), 1194-1204. MR 0757776, 10.1214/aop/1176993148
Reference: [5] Haan, L. de, Pickands, J.: Stationary min-stable stochastic processes..Probab. Theory Related Fields 72 (1986), 477-492. Zbl 0577.60034, MR 0847381, 10.1007/bf00344716
Reference: [6] Fermanian, J. D., Radulovic, D., Wegkamp, M.: Weak convergence of empirical copula processes..Bernoulli 10 (2004), 847-860. Zbl 1068.62059, MR 2093613, 10.3150/bj/1099579158
Reference: [7] Ferreira, H.: Dependence between two multivariate extremes..Statist. Probab. Lett. 81 (2011), 5, 586-591. Zbl 1209.62122, MR 2772916, 10.1016/j.spl.2011.01.014
Reference: [8] Gilat, D., Hill, T.: One-sided refinements of the strong law of large numbers and the Glivenko-Cantelli Theorem..Ann. Probab. 20 (1992), 1213-1221. Zbl 0762.60025, MR 1175259, 10.1214/aop/1176989688
Reference: [9] Krajina, A.: An M-Estimator of Multivariate Dependence Concepts..Tilburg University Press, Tilburg 2010.
Reference: [10] Naveau, P., Guillou, A., Cooley, D., Diebolt, J.: Modelling pairwise dependence of maxima in space..Biometrika 96 (2009), 1, 1-17. Zbl 1162.62045, MR 2482131, 10.1093/biomet/asp001
Reference: [11] Neuhaus, G.: On the weak convergence of stochastic processes with multidimensional time parameter..Ann. Math. Statist. 42 (1971), 4, 1285-1295. MR 0293706, 10.1214/aoms/1177693241
Reference: [12] Resnick, S. I.: Extreme Values, Regular Variation and Point Processes..Springer-Verlag, Berlin 1987. Zbl 1136.60004, MR 0900810, 10.1007/978-0-387-75953-1
Reference: [13] Ribatet, M.: A User's Guide to the Spatial Extremes Package..Unpublished, 2009.
Reference: [14] Schlather, M.: Models for stationary max-stable random fields..Extremes 5 (2002), 1, 33-44. Zbl 1035.60054, MR 1947786, 10.1023/a:1020977924878
Reference: [15] Schlather, M., Tawn, J.: A dependece measure for multivariate and spatial extreme values: Properties and inference..Biometrika 90 (2003), 139-156. MR 1966556, 10.1093/biomet/90.1.139
Reference: [16] Smith, R. L.: Max-stable processes and spatial extremes..Unpublished manuscript, 1990.
Reference: [17] Smith, R. L., Weissman, I.: Characterization and Estimation of the Multivariate Extremal Index..Technical Report, Department of Statistics, University of North Carolina 1996.
Reference: [18] Vaart, A. Van Der, Wellner, J. A.: Weak Convergence and Empirical Processes..Springer-Verlag, New York 1996. MR 1385671, 10.1007/978-1-4757-2545-2
Reference: [19] Vatan, P.: Max-infinite divisibility and max-stability in infinite dimensions..Probability in Banach Spaces V, Lect. Notes in Math. 1153 (1985), 400-425. Zbl 0608.60008, MR 0821994, 10.1007/bfb0074963
Reference: [20] Zhang, Z., Smith, R. L.: The behavior of multivariate maxima of moving maxima processes..J. Appl. Probab. 41 (2004), 4, 1113-1123. Zbl 1122.60052, MR 2122805, 10.1239/jap/1101840556
Reference: [21] Zhang, Z., Smith, R. L.: On the estimation and application of max-stable processes..J. Statist. Planning Inference 140 (2010), 5, 1135-1153. Zbl 1181.62150, MR 2581117, 10.1016/j.jspi.2009.10.014
.

Files

Files Size Format View
Kybernetika_51-2015-2_1.pdf 593.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo