Previous |  Up |  Next

Article

Title: A local approach to $g$-entropy (English)
Author: Rahimi, Mehdi
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 2
Year: 2015
Pages: 231-245
Summary lang: English
.
Category: math
.
Summary: In this paper, a local approach to the concept of $g$-entropy is presented. Applying the Choquet`s representation Theorem, the introduced concept is stated in terms of $g$-entropy. (English)
Keyword: fuzzy entropy
Keyword: $g$-entropy
Keyword: local entropy
MSC: 28D20
MSC: 28E10
idZBL: Zbl 06487075
idMR: MR3350558
DOI: 10.14736/kyb-2015-2-0231
.
Date available: 2015-06-19T15:16:51Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144294
.
Reference: [1] Brin, M., Katok, A.: On local entropy in geometric dynamics..Springer-Verlag, New York 1983 (Lecture Notes in Mathematics 1007) (1983), pp. 30-38. MR 0730261, 10.1007/bfb0061408
Reference: [2] Butnariu, D., Klement, E. P.: Triangular norm-based measures and their Markov kernel representation..J. Math. Anal. Appl. 162 (1991), 111-143. Zbl 0751.60003, MR 1135265, 10.1016/0022-247x(91)90181-x
Reference: [3] Dumitrescu, D.: Measure-preserving transformation and the entropy of a fuzzy partition..In: 13th Linz Seminar on Fuzzy Set Theory, Linz 1991, pp. 25-27.
Reference: [4] Dumitrescu, D.: Fuzzy measures and the entropy of fuzzy partitions..J. Math. Anal. Appl. 176 (1993), 359-373. Zbl 0782.28012, MR 1224152, 10.1006/jmaa.1993.1220
Reference: [5] Dumitrescu, D.: Entropy of a fuzzy process..Fuzzy Sets and Systems 55 (1993), 169-177. Zbl 0818.28008, MR 1215137, 10.1016/0165-0114(93)90129-6
Reference: [6] Dumitrescu, D.: Entropy of fuzzy dynamical systems..Fuzzy Sets and Systems 70 (1995), 45-57. Zbl 0876.28029, MR 1323286, 10.1016/0165-0114(94)00245-3
Reference: [7] Markechová, D.: The entropy on F-quantum spaces..Math. Slovaca 40 (1990), 177-190. Zbl 0735.28011, MR 1094772
Reference: [8] Markechová, D.: The entropy of fuzzy dynamical systems and generators..Fuzzy Sets and Systems 48 (1992), 351-363. Zbl 0754.60005, MR 1178175, 10.1016/0165-0114(92)90350-d
Reference: [9] Markechová, D.: Entropy of complete fuzzy partitions..Math. Slovaca 43 (1993), 1, 1-10. Zbl 0772.94002, MR 1216263
Reference: [10] Markechová, D.: A note to the Kolmogorov-Sinaj entropy of fuzzy dynamical systems..Fuzzy Sets and Systems 64 (1994), 87-90. Zbl 0845.93054, MR 1281288, 10.1016/0165-0114(94)90009-4
Reference: [11] McMillan, B.: The basic theorems of information theory..Ann. Math. Statist. 24 (1953), 196-219. Zbl 0050.35501, MR 0055621, 10.1214/aoms/1177729028
Reference: [12] Mesiar, R., Rybárik, J.: Entropy of fuzzy partitions: A general model..Fuzzy Sets and Systems 99 (1998), 73-79. Zbl 0977.28015, MR 1643178, 10.1016/s0165-0114(97)00024-9
Reference: [13] Rahimi, M., Riazi, A.: Entropy operator for continuous dynamical systems of finite topological entropy..Bull. Iranian Math. Soc. 38 (2012), 4, 883-892. MR 3028690
Reference: [14] Rahimi, M., Riazi, A.: On local entropy of fuzzy partitions..Fuzzy Sets and Systems 234 (2014), 97-108. MR 3128474, 10.1016/j.fss.2013.02.006
Reference: [15] Riečan, B.: On a type of entropy of dynamical systems..Tatra Mountains Math. Publ. 1 (1992), 135-140. Zbl 0794.58024, MR 1230471
Reference: [16] Riečan, B.: On the $g$-entropy and its Hudetz correction..Kybernetika 38 (2002), 4, 493-500. Zbl 1265.94035, MR 1937143, 10.1016/j.physa.2007.06.047
Reference: [17] Riečan, B., Markechová, D.: The entropy of fuzzy dynamical systems, general scheme and generators..Fuzzy Sets and Systems 96 (1998), 191-199. Zbl 0926.94012, MR 1614814, 10.1016/s0165-0114(96)00266-7
Reference: [18] Riečan, B., Neubrunn, T.: Integral, Measure, and Ordering..Kluwer, Dordrecht and Ister, Bratislava 1997. Zbl 0916.28001, MR 1489521, 10.1007/978-94-015-8919-2
Reference: [19] Rybárik, J.: The entropy of the Q-F-dynamical systems..Busefal 48 (1991), 24-26.
Reference: [20] Rybárik, J.: The entropy based on pseudoarithmetical operations..Tatra Mountains Math. Publ. 6 (1995), 157-164. MR 1363994
Reference: [21] Pesin, Ya.: Characteristic Lyapunov exponents and smooth ergodic theory..Russian Math. Surveys 32 (1977), 54-114. Zbl 0383.58011, MR 0466791, 10.1070/rm1977v032n04abeh001639
Reference: [22] Phelps, R.: Lectures on Choquet's Theorem..Van Nostrand, Princeton, N.J. 1966. Zbl 0997.46005, MR 0193470
Reference: [23] Ruelle, D.: An inequality for the entropy of differential maps..Bol. Soc. Bras. de Mat. 9 (1978), 83-87. MR 0516310, 10.1007/bf02584795
Reference: [24] Walters, P.: An Introduction to Ergodic Theory..Springer-Verlag, 1982. Zbl 0958.28011, MR 0648108
.

Files

Files Size Format View
Kybernetika_51-2015-2_3.pdf 290.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo