Previous |  Up |  Next

Article

Title: Integrable solutions for implicit fractional order functional differential equations with infinite delay (English)
Author: Benchohra, Mouffak
Author: Souid, Mohammed Said
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 51
Issue: 2
Year: 2015
Pages: 67-76
Summary lang: English
.
Category: math
.
Summary: In this paper we study the existence of integrable solutions for initial value problem for implicit fractional order functional differential equations with infinite delay. Our results are based on Schauder type fixed point theorem and the Banach contraction principle fixed point theorem. (English)
Keyword: implicit fractional-order differential equation
Keyword: Caputo fractional derivative, integrable solution
Keyword: existence fixed point
Keyword: infinite delay
MSC: 26A33
MSC: 34A08
MSC: 34K37
idZBL: Zbl 06487021
idMR: MR3367093
DOI: 10.5817/AM2015-2-67
.
Date available: 2015-06-24T13:37:21Z
Last updated: 2016-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144306
.
Reference: [1] Abbas, S., Benchohra, M., N’Guérékata, G.M.: Topics in Fractional Differential Equations.Springer, New York, 2012. MR 2962045
Reference: [2] Abbas, S., Benchohra, M., N’Guérékata, G.M.: Avanced Fractional Differential and Integral Equations.Nova Science Publishers, New York, 2015. MR 3309582
Reference: [3] Agarwal, R.P., Belmekki, M., Benchohra, M.: A survey on semilinear differential equations and inclusions involving Riemann–Liouville fractional derivative.Adv. Differential Equations 2009 (2009), 1–47, ID 981728. Zbl 1182.34103, MR 2505633, 10.1155/2009/981728
Reference: [4] Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence result for boundary value problems of nonlinear fractional differential equations and inclusions.Acta Appl. Math. 109 (3) (2010), 973–1033. MR 2596185, 10.1007/s10440-008-9356-6
Reference: [5] Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods.World Scientific Publishing, New York, 2012. Zbl 1248.26011, MR 2894576
Reference: [6] Belarbi, A., Benchohra, M., Ouahab, A.: Uniqueness results for fractional functional differential equations with infinite delay in Fréchet spaces.Appl. Anal. 85 (2006), 1459–1470. Zbl 1175.34080, MR 2282996, 10.1080/00036810601066350
Reference: [7] Benchohra, M., Hamani, S., Ntouyas, S.K.: Boundary value problems for differential equations with fractional order.Surveys Math. Appl. 3 (2008), 1–12. Zbl 1157.26301, MR 2390179
Reference: [8] Benchohra, M., Hamani, S., Ntouyas, S.K.: Boundary value problems for differential equations with fractional order and nonlocal conditions.Nonlinear Anal. 71 (2009), 2391–2396. MR 2532767
Reference: [9] Benchohra, M., Henderson, J., Ntouyas, S.K., Ouahab, A.: Existence results for functional differential equations of fractional order.J. Math. Anal. Appl. 338 (2008), 1340–1350. MR 2386501, 10.1016/j.jmaa.2007.06.021
Reference: [10] Deimling, K.: Nonlinear Functional Analysis.Springer-Verlag, 1985. Zbl 0559.47040, MR 0787404
Reference: [11] El-Sayed, A.M.A., Abd El-Salam, Sh.A.: $L^p$-solution of weighted Cauchy-type problem of a differ-integral functional equation.Intern. J. Nonlinear Sci. 5 (2008), 281–288. Zbl 1230.34006, MR 2410798
Reference: [12] El-Sayed, A.M.M., Hashem, H.H.G.: Integrable and continuous solutions of a nonlinear quadratic integral equation.Electron. J. Qual. Theory Differ. Equ. 25) (2008), 1–10. Zbl 1178.45008, MR 2443206, 10.14232/ejqtde.2008.1.25
Reference: [13] Hale, J., Kato, J.: Phase space for retarded equations with infinite delay.Funkcial. Ekvac. 21 (1978), 11–41. Zbl 0383.34055, MR 0492721
Reference: [14] Hale, J.K., Lunel, S M.V.: Introduction to Functional Differential Equations.Springer-Verlag, New York, 1993. Zbl 0787.34002, MR 1243878
Reference: [15] Hilfer, R.: Applications of Fractional Calculus in Physics.World Scientific, Singapore, 2000. Zbl 0998.26002, MR 1890104
Reference: [16] Hino, Y., Murakami, S., Naito, T.: Functional Differential Equations with Infinite Delay.Springer-Verlag, Berlin, 1991. Zbl 0732.34051, MR 1122588
Reference: [17] Kappel, F., Schappacher, W.: Some considerations to the fundamental theory of infinite delay equations.J. Differential Equations 37 (1980), 141–183. Zbl 0466.34036, MR 0587220, 10.1016/0022-0396(80)90093-5
Reference: [18] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations.North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006. Zbl 1092.45003, MR 2218073
Reference: [19] Lakshmikantham, V., Leela, S., Vasundhara, J.: Theory of Fractional Dynamic Systems.Cambridge Academic Publishers, 2009. Zbl 1188.37002
Reference: [20] Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. An introduction to mathematical models.Imperial College Press, London, 2010. Zbl 1210.26004, MR 2676137
Reference: [21] Ortigueira, M.D.: Fractional Calculus for Scientists and Engineers.Lecture Notes in Electrical Engineering, vol. 84, Springer, Dordrecht, 2011. Zbl 1251.26005, MR 2768178, 10.1007/978-94-007-0747-4
Reference: [22] Podlubny, I.: Fractional Differential Equations.Academic Press, San Diego, 1999. Zbl 0924.34008, MR 1658022
Reference: [23] Schumacher, K.: Existence and continuous dependence for differential equations with unbounded delay.Arch. Ration. Mech. Anal. 64 (1978), 315–335. MR 0477379
Reference: [24] Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media.Springer, Heidelberg; Higher Education Press, Beijing, 2010. MR 2796453
.

Files

Files Size Format View
ArchMathRetro_051-2015-2_1.pdf 467.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo