Previous |  Up |  Next

Article

Title: Global behavior of the difference equation $x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}$ (English)
Author: Abo-Zeid, Raafat
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 51
Issue: 2
Year: 2015
Pages: 77-85
Summary lang: English
.
Category: math
.
Summary: In this paper, we introduce an explicit formula and discuss the global behavior of solutions of the difference equation \[ x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}\,,\qquad n=0,1,\dots \] where $a,b,c$ are positive real numbers and the initial conditions $x_{-3}$, $x_{-2}$, $x_{-1}$, $x_0$ are real numbers. (English)
Keyword: difference equation
Keyword: periodic solution
Keyword: convergence
MSC: 39A20
MSC: 39A21
MSC: 39A23
MSC: 39A30
idZBL: Zbl 06487022
idMR: MR3367094
DOI: 10.5817/AM2015-2-77
.
Date available: 2015-06-24T13:39:00Z
Last updated: 2016-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144308
.
Reference: [1] Abo-Zeid, R.: Global asymptotic stability of a higher order difference equation.Bull. Allahabad Math. Soc. 2 (2) (2010), 341–351. Zbl 1227.39015, MR 2779248
Reference: [2] Abo-Zeid, R.: Global asymptotic stability of a second order rational difference equation.J. Appl. Math. & Inform. 2 (3) (2010), 797–804. Zbl 1294.39010, MR 2779248
Reference: [3] Agarwal, R.P.: Difference Equations and Inequalities.first ed., Marcel Decker, 1992. Zbl 0925.39001, MR 1155840
Reference: [4] Al-Shabi, M.A., Abo-Zeid, R.: Global asymptotic stability of a higher order difference equation.Appl. Math. Sci. 4 (17) (2010), 839–847. Zbl 1198.39025, MR 2595521
Reference: [5] Camouzis, E., Ladas, G.: Dynamics of Third-Order Rational Difference Equations; With Open Problems and Conjectures.Chapman and Hall/HRC Boca Raton, 2008. Zbl 1129.39002, MR 2363297
Reference: [6] Elsayed, E.M.: On the difference equation $x_{n+1}=\frac{x_{n-5}}{-1+x_{n-2}x_{n-5} }$.Int. J. Contemp. Math. Sciences 3 (33) (2008), 1657–1664. Zbl 1172.39009, MR 2511022
Reference: [7] Elsayed, E.M.: On the solution of some difference equations.European J. Pure Appl. Math. 4 (2011), 287–303. MR 2824757
Reference: [8] Grove, E.A., Ladas, G.: Periodicities in Nonlinear Difference Equations.Chapman and Hall/CRC, 2005. Zbl 1078.39009, MR 2193366
Reference: [9] Karakostas, G.: Convergence of a difference equation via the full limiting sequences method.Differential Equations Dynam. Systems 1 (4) (1993), 289–294. Zbl 0868.39002, MR 1259169
Reference: [10] Karatas, R., Cinar, C., Simsek, D.: On the positive solution of the difference equation $x_{n+1}=\frac{x_{n-5}}{1+x_{n-2}x_{n-5} }$.Int. J. Contemp. Math. Sciences 1 (10) (2006), 495–500. MR 2287595
Reference: [11] Kocic, V.L., Ladas, G.: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications.Kluwer Academic, Dordrecht, 1993. Zbl 0787.39001, MR 1247956
Reference: [12] Kruse, N., Nesemann, T.: Global asymptotic stability in some discrete dynamical systems.J. Math. Anal. Appl. 235 (1) (1999), 151–158. Zbl 0933.37016, MR 1758674, 10.1006/jmaa.1999.6384
Reference: [13] Kulenović, M.R.S., Ladas, G.: Dynamics of Second Order Rational Difference Equations; With Open Problems and Conjectures.Chapman and Hall/HRC Boca Raton, 2002. Zbl 0981.39011, MR 1935074
Reference: [14] Levy, H., Lessman, F.: Finite Difference Equations.Dover, New York, NY, USA, 1992. MR 1217083
Reference: [15] Sedaghat, H.: Global behaviours of rational difference equations of orders two and three with quadratic terms.J. Differ. Equations Appl. 15 (3) (2009), 215–224. Zbl 1169.39006, MR 2498770, 10.1080/10236190802054126
Reference: [16] Simsek, D., Cinar, C., Karatas, R., Yalcinkaya, I.: On the recursive sequence $x_{n+1}=\frac{x_{n-5}}{1+x_{n-1}x_{n-3}}$.Int. J. Pure Appl. Math. 28 (1) (2006), 117–124. Zbl 1116.39005, MR 2227156
Reference: [17] Simsek, D., Cinar, C., Yalcinkaya, I.: On the recursive sequence $x_{n+1}=\frac{x_{n-3}}{1+x_{n-1} }$.Int. J. Contemp. Math. Sciences 1 (10) (2006), 475–480. Zbl 1157.39311, MR 2287592
Reference: [18] Stević, S.: More on a rational recurrence relation.Appl. Math. E-Notes 4 (2004), 80–84. Zbl 1069.39024, MR 2077785
Reference: [19] Stević, S.: On positive solutions of a $(k +1)$th order difference equation.Appl. Math. Lett. 19 (5) (2006), 427–431. Zbl 1095.39010, MR 2213143, 10.1016/j.aml.2005.05.014
.

Files

Files Size Format View
ArchMathRetro_051-2015-2_2.pdf 525.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo