Title:
|
Global behavior of the difference equation $x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}$ (English) |
Author:
|
Abo-Zeid, Raafat |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
51 |
Issue:
|
2 |
Year:
|
2015 |
Pages:
|
77-85 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we introduce an explicit formula and discuss the global behavior of solutions of the difference equation \[ x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}\,,\qquad n=0,1,\dots \] where $a,b,c$ are positive real numbers and the initial conditions $x_{-3}$, $x_{-2}$, $x_{-1}$, $x_0$ are real numbers. (English) |
Keyword:
|
difference equation |
Keyword:
|
periodic solution |
Keyword:
|
convergence |
MSC:
|
39A20 |
MSC:
|
39A21 |
MSC:
|
39A23 |
MSC:
|
39A30 |
idZBL:
|
Zbl 06487022 |
idMR:
|
MR3367094 |
DOI:
|
10.5817/AM2015-2-77 |
. |
Date available:
|
2015-06-24T13:39:00Z |
Last updated:
|
2016-04-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144308 |
. |
Reference:
|
[1] Abo-Zeid, R.: Global asymptotic stability of a higher order difference equation.Bull. Allahabad Math. Soc. 2 (2) (2010), 341–351. Zbl 1227.39015, MR 2779248 |
Reference:
|
[2] Abo-Zeid, R.: Global asymptotic stability of a second order rational difference equation.J. Appl. Math. & Inform. 2 (3) (2010), 797–804. Zbl 1294.39010, MR 2779248 |
Reference:
|
[3] Agarwal, R.P.: Difference Equations and Inequalities.first ed., Marcel Decker, 1992. Zbl 0925.39001, MR 1155840 |
Reference:
|
[4] Al-Shabi, M.A., Abo-Zeid, R.: Global asymptotic stability of a higher order difference equation.Appl. Math. Sci. 4 (17) (2010), 839–847. Zbl 1198.39025, MR 2595521 |
Reference:
|
[5] Camouzis, E., Ladas, G.: Dynamics of Third-Order Rational Difference Equations; With Open Problems and Conjectures.Chapman and Hall/HRC Boca Raton, 2008. Zbl 1129.39002, MR 2363297 |
Reference:
|
[6] Elsayed, E.M.: On the difference equation $x_{n+1}=\frac{x_{n-5}}{-1+x_{n-2}x_{n-5} }$.Int. J. Contemp. Math. Sciences 3 (33) (2008), 1657–1664. Zbl 1172.39009, MR 2511022 |
Reference:
|
[7] Elsayed, E.M.: On the solution of some difference equations.European J. Pure Appl. Math. 4 (2011), 287–303. MR 2824757 |
Reference:
|
[8] Grove, E.A., Ladas, G.: Periodicities in Nonlinear Difference Equations.Chapman and Hall/CRC, 2005. Zbl 1078.39009, MR 2193366 |
Reference:
|
[9] Karakostas, G.: Convergence of a difference equation via the full limiting sequences method.Differential Equations Dynam. Systems 1 (4) (1993), 289–294. Zbl 0868.39002, MR 1259169 |
Reference:
|
[10] Karatas, R., Cinar, C., Simsek, D.: On the positive solution of the difference equation $x_{n+1}=\frac{x_{n-5}}{1+x_{n-2}x_{n-5} }$.Int. J. Contemp. Math. Sciences 1 (10) (2006), 495–500. MR 2287595 |
Reference:
|
[11] Kocic, V.L., Ladas, G.: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications.Kluwer Academic, Dordrecht, 1993. Zbl 0787.39001, MR 1247956 |
Reference:
|
[12] Kruse, N., Nesemann, T.: Global asymptotic stability in some discrete dynamical systems.J. Math. Anal. Appl. 235 (1) (1999), 151–158. Zbl 0933.37016, MR 1758674, 10.1006/jmaa.1999.6384 |
Reference:
|
[13] Kulenović, M.R.S., Ladas, G.: Dynamics of Second Order Rational Difference Equations; With Open Problems and Conjectures.Chapman and Hall/HRC Boca Raton, 2002. Zbl 0981.39011, MR 1935074 |
Reference:
|
[14] Levy, H., Lessman, F.: Finite Difference Equations.Dover, New York, NY, USA, 1992. MR 1217083 |
Reference:
|
[15] Sedaghat, H.: Global behaviours of rational difference equations of orders two and three with quadratic terms.J. Differ. Equations Appl. 15 (3) (2009), 215–224. Zbl 1169.39006, MR 2498770, 10.1080/10236190802054126 |
Reference:
|
[16] Simsek, D., Cinar, C., Karatas, R., Yalcinkaya, I.: On the recursive sequence $x_{n+1}=\frac{x_{n-5}}{1+x_{n-1}x_{n-3}}$.Int. J. Pure Appl. Math. 28 (1) (2006), 117–124. Zbl 1116.39005, MR 2227156 |
Reference:
|
[17] Simsek, D., Cinar, C., Yalcinkaya, I.: On the recursive sequence $x_{n+1}=\frac{x_{n-3}}{1+x_{n-1} }$.Int. J. Contemp. Math. Sciences 1 (10) (2006), 475–480. Zbl 1157.39311, MR 2287592 |
Reference:
|
[18] Stević, S.: More on a rational recurrence relation.Appl. Math. E-Notes 4 (2004), 80–84. Zbl 1069.39024, MR 2077785 |
Reference:
|
[19] Stević, S.: On positive solutions of a $(k +1)$th order difference equation.Appl. Math. Lett. 19 (5) (2006), 427–431. Zbl 1095.39010, MR 2213143, 10.1016/j.aml.2005.05.014 |
. |