Previous |  Up |  Next

Article

Title: Locally solid topological lattice-ordered groups (English)
Author: Hong, Liang
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 51
Issue: 2
Year: 2015
Pages: 107-128
Summary lang: English
.
Category: math
.
Summary: Locally solid Riesz spaces have been widely investigated in the past several decades; but locally solid topological lattice-ordered groups seem to be largely unexplored. The paper is an attempt to initiate a relatively systematic study of locally solid topological lattice-ordered groups. We give both Roberts-Namioka-type characterization and Fremlin-type characterization of locally solid topological lattice-ordered groups. In particular, we show that a group topology on a lattice-ordered group is locally solid if and only if it is generated by a family of translation-invariant lattice pseudometrics. We also investigate (1) the basic properties of lattice group homomorphism on locally solid topological lattice-ordered groups; (2) the relationship between order-bounded subsets and topologically bounded subsets in locally solid topological lattice-ordered groups; (3) the Hausdorff completion of locally solid topological lattice-ordered groups. (English)
Keyword: characterization
Keyword: Hausdorff completion
Keyword: lattice homomorphisms
Keyword: locally solid topological $l$-groups
Keyword: neighborhood theorem
Keyword: order-bounded subsets
MSC: 06B35
MSC: 06F15
MSC: 06F20
MSC: 06F30
MSC: 20F60
MSC: 22A26
idZBL: Zbl 06487024
idMR: MR3367096
DOI: 10.5817/AM2015-2-107
.
Date available: 2015-06-24T13:42:47Z
Last updated: 2016-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144310
.
Reference: [1] Aliprantis, C.D.: On the completion of Hausdorff locally solid Riesz spaces.Trans. Amer. Math. Soc. 196 (1974), 105–125. Zbl 0258.46009, MR 0350372, 10.1090/S0002-9947-1974-0350372-0
Reference: [2] Aliprantis, C.D., Burkinshaw, O.: Positive Operators.Springer, Berlin, Heidelberg, New York., 1985. Zbl 0608.47039, MR 0809372
Reference: [3] Aliprantis, C.D., Burkinshaw, O.: Locally Solid Riesz Spaces with Applications to Economics.second ed., Springer, Berlin, Heidelberg, New York, 2003. Zbl 1043.46003, MR 2011364
Reference: [4] Arhangel’skii, A., Tkachenko, M.: Topological groups and related structures.Atlantic Press, Amsterdam, Paris, 2008. MR 2433295
Reference: [5] Baer, R.: Abelian groups without elements of finite order.Duke Math. J. 3 (1) (1937), 68–122. Zbl 0016.20303, MR 1545974, 10.1215/S0012-7094-37-00308-9
Reference: [6] Ball, R.N.: Topological lattice ordered groups.Pacific J. Math. 83 (1) (1979), 1–26. Zbl 0434.06016, MR 0555035, 10.2140/pjm.1979.83.1
Reference: [7] Ball, R.N.: Convergence and Cauchy structures on lattice ordered groups.Trans. Amer. Math. Soc. 259 (2) (1980), 357–392. Zbl 0441.06015, MR 0567085, 10.1090/S0002-9947-1980-0567085-5
Reference: [8] Beckenstein, E., Narici, L., Suffel, C.: Topological Algebras.North-Holland, Amsterdam, 1977. Zbl 0348.46041, MR 0473835
Reference: [9] Birkhoff, G.: Lattice-ordered groups.Ann. of Math. 43 (2) (1941), 298–331. MR 0006550, 10.2307/1968871
Reference: [10] Birkhoff, G.: Lattice Theory.Amer. Math. Soc. Colloq. Publ., vol. 25, Providence, Rhode Island, third ed., 1967. Zbl 0153.02501, MR 0029876
Reference: [11] Bourbaki, N.: Elements of Mathematics: Topological Vectors Spaces.ch. 1–5, Springer, Berlin, New York, 1987. MR 0910295
Reference: [12] Clifford, A.H.: Partially ordered abelian groups.Ann. of Math. 41 (1940), 465–473. Zbl 0025.00801, MR 0002134, 10.2307/1968728
Reference: [13] Fremlin, D.H.: On the completion of locally solid vector lattice.Pacific J. Math. 43 (1972), 341–347. MR 0318832, 10.2140/pjm.1972.43.341
Reference: [14] Fremlin, D.H.: Topological Riesz Spaces and Measure Theorey.Cambridge University Press, Cambridge, 1974. MR 0454575
Reference: [15] Fuchs, L.: Partially Ordered Algebraic Systems.Pergamon Press, Oxford, New York, 1963. Zbl 0137.02001, MR 0171864
Reference: [16] Fuchs, L.: Riesz groups.Ann. Scuola Norm. Sup. Pisa 19 (1965), 1–34. Zbl 0125.28703, MR 0180609
Reference: [17] Fuchs, L.: Riesz vector spaces and Riesz algebra.Queen's Papers in Pure and Applied Mathematics, Queen's University, Kingston, Ont., 1966. MR 0203436
Reference: [18] Goffman, C.: A lattice homomorphism of a lattice ordered group.Proc. Amer. Math. Soc. 8 (1957), 547–550. Zbl 0081.25801, MR 0087661, 10.1090/S0002-9939-1957-0087661-9
Reference: [19] Gusić, : A topology on lattice ordered groups.Proc. Amer. Math. Soc. 126 (9) (1998), 2593–2597. Zbl 0943.06009, MR 1452805, 10.1090/S0002-9939-98-04386-X
Reference: [20] Husain, T.: Introduction to Topological Groups.W.B. Sounders Company, Philadelphia, London, 1966. Zbl 0136.29402, MR 0200383
Reference: [21] Jaffard, P.: Contribution à l’étude des groupes ordonnés.J. Math. Pures Appl. 32 (1953), 203–280, (French). Zbl 0051.01303, MR 0057869
Reference: [22] Kawai, I.: Locally convex lattices.J. Mat. Soc. Japan 9, 281–314. Zbl 0079.32203, MR 0095399, 10.2969/jmsj/00930281
Reference: [23] Khan, A.R., Rowlands, K.: On locally solid topological lattice groups.Czechoslovak Math. J. 57 (3) (2007), 963–973. Zbl 1174.54025, MR 2356933, 10.1007/s10587-007-0088-y
Reference: [24] Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces, I.North-Holland, Amsterdam, 1971.
Reference: [25] Nakano, H.: Linear topologies on semi-ordered linear spaces.J. Fac. Sci. Hokkaido Univ. Ser. I 12 (1953), 87–104. Zbl 0053.25702, MR 0056851
Reference: [26] Namioka, I.: Partially ordered linear topological spaces.Mem. Amer. Math. Soc., vol. 24, 1957, p. 50pp. Zbl 0105.08901, MR 0094681
Reference: [27] Pierce, R.: Homomorphisms of semi-groups.Ann. of Math. 59 (2), 287–291. Zbl 0055.01502, MR 0062120, 10.2307/1969693
Reference: [28] Pontrjagin, L.: Topological Groups.Princeton University Press, Princeton, NJ, 1946, Translated by Emma Lehmer.
Reference: [29] Redfield, R.H.: A topology for a lattice-ordered group.Trans. Amer. Math. Soc. 187 (1974), 103–125. Zbl 0302.06028, MR 0327607, 10.1090/S0002-9947-1974-0327607-3
Reference: [30] Roberts, G.T.: Topologies in vector lattices.Math. Proc. Cambridge Philos. Soc. (1952). Zbl 0047.10503, MR 0050873
Reference: [31] Šmarda, B.: Topologies in $l$-groups.Arch. Math. (Brno) 3 (2) (1967), 69–81. MR 0223283
Reference: [32] Šmarda, B.: Some types of topological $l$-groups.Publ. Fac. Sci. Univ. J. E. Purkyne Brno, vol. 507, 1969. Zbl 0241.22003, MR 0272940
Reference: [33] Teller, J.R.: On the extensions of lattice-ordered groups.Pacific J. Math. 14 (2) (1964), 709–718. Zbl 0122.27904, MR 0163970, 10.2140/pjm.1964.14.709
Reference: [34] Willard, S.: General Topology.Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970. Zbl 0205.26601, MR 0264581
Reference: [35] Zaanen, A.C.: Introduction to Operator Theory in Riesz Spaces.Springer, Berlin, Heidelberg, New York, 1997. Zbl 0878.47022, MR 1631533
.

Files

Files Size Format View
ArchMathRetro_051-2015-2_4.pdf 521.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo