Previous |  Up |  Next

Article

Title: Correct solvability of a general differential equation of the first order in the space $L_p(\mathbb{R})$ (English)
Author: Chernyavskaya, N.
Author: Shuster, L. A.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 51
Issue: 2
Year: 2015
Pages: 87-105
Summary lang: English
.
Category: math
.
Summary: We consider the equation \begin{equation} - r(x)y^{\prime }(x)+q(x)y(x)=f(x)\,,\quad x\in \mathbb{R} \end{equation} where $f\in L_p(\mathbb{R}) $, $p\in [1,\infty ]$ ($L_\infty (\mathbb{R}):=C(\mathbb{R})$) and \begin{equation} 0<r\in C^{}(\mathbb{R})\,,\quad 0\le q\in L_1^{}(\mathbb{R})\,. \end{equation} We obtain minimal requirements to the functions $r$ and $q$, in addition to (), under which equation () is correctly solvable in $L_p(\mathbb{R})$, $p\in [1,\infty ]$. (English)
Keyword: correct solvability
Keyword: differential equation of the first order
MSC: 46E35
idZBL: Zbl 06487023
idMR: MR3367095
DOI: 10.5817/AM2015-2-87
.
Date available: 2015-06-24T13:39:56Z
Last updated: 2023-10-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144309
.
Reference: [1] Chernyavskaya, N.: Conditions for correct solvability of a simplest singular boundary value problem.Math. Nachr. 243 (2002), 5–18. Zbl 1028.34018, MR 1923831, 10.1002/1522-2616(200209)243:1<5::AID-MANA5>3.0.CO;2-B
Reference: [2] Chernyavskaya, N., Shuster, L.: Conditions for correct solvability of a simplest singular boundary value problem of general form. I.Z. Anal. Anwendungen 25 (2006), 205–235. Zbl 1122.34021, MR 2229446, 10.4171/ZAA/1285
Reference: [3] Chernyavskaya, N., Shuster, L.: Conditions for correct solvability of a simplest singular boundary value problem of general form. II.Z. Anal. Anwendungen 26 (2007), 439–458. Zbl 1139.34010, MR 2341766, 10.4171/ZAA/1334
Reference: [4] Kantorovich, L.W., Akilov, G.P.: Functional Analysis.Nauka, Moscow, 1977. MR 0511615
Reference: [5] Lukachev, M., Shuster, L.: On uniqueness of soltuion of a linear differential equation without boundary conditions.Funct. Differ. Equ. 14 (2007), 337–346. MR 2323215
Reference: [6] Mynbaev, K., Otelbaev, M.: Weighted Function Spaces and the Spectrum of Differential Operators.Nauka, Moscow, 1988. MR 0950172
Reference: [7] Opic, B., Kufner, A.: Hardy Type Inequalities.Pitman Research Notes in Mathematics Series, vol. 219, Harlow, Longman, 1990. Zbl 0698.26007, MR 1069756
Reference: [8] Otelbaev, M.: Estimates of the Spectrum of the Sturm-Liouville Operator.Alma-Ata, Gilim, 1990, in Russian. Zbl 0747.47029
.

Files

Files Size Format View
ArchMathRetro_051-2015-2_3.pdf 566.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo