[1] Agarwal, R. P., Perera, K., O'Regan, D.:
Multiple positive solutions of singular discrete $p$-Laplacian problems via variational methods. Adv. Difference Equ. 2005 (2005), 93-99.
MR 2197124 |
Zbl 1098.39001
[2] Bai, D.:
A global result for discrete $\phi$-Laplacian eigenvalue problems. Adv. Difference Equ. 2013 (2013), Article ID 264, 10 pages.
MR 3110766
[3] Bai, D., Xu, X.:
Existence and multiplicity of difference $\phi$-Laplacian boundary value problems. Adv. Difference Equ. 2013 (2013), Article ID 267, 13 pages.
MR 3125053
[6] Jaroš, J., Kusano, T.:
A Picone type identity for second-order half-linear differential equations. Acta Math. Univ. Comen., New Ser. 68 (1999), 137-151.
MR 1711081 |
Zbl 0926.34023
[7] Ji, D., Ge, W.:
Existence of multiple positive solutions for Sturm-Liouville-like four-point boundary value problem with $p$-Laplacian. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 68 (2008), 2638-2646.
DOI 10.1016/j.na.2007.02.010 |
MR 2397748 |
Zbl 1145.34309
[8] Kim, C.-G., Shi, J.:
Global continuum and multiple positive solutions to a $p$-Laplacian boundary-value problem. Electron. J. Differ. Equ. (electronic only) 2012 (2012), 12 pages.
MR 2946845 |
Zbl 1260.34045
[9] Kusano, T., Jaroš, J., Yoshida, N.:
A Picone-type identity and Sturmian comparison and oscillation theorems for a class of half-linear partial differential equations of second order. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 40 (2000), 381-395.
DOI 10.1016/S0362-546X(00)85023-3 |
MR 1768900 |
Zbl 0954.35018
[10] Lee, Y.-H., Sim, I.:
Existence results of sign-changing solutions for singular one-dimensional $p$-Laplacian problems. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 68 (2008), 1195-1209.
DOI 10.1016/j.na.2006.12.015 |
MR 2381665 |
Zbl 1138.34010
[14] Xia, J., Liu, Y.:
Positive solutions of BVPs for infinite difference equations with one-dimensional $p$-Laplacian. Miskolc Math. Notes 13 (2012), 149-176.
DOI 10.18514/MMN.2012.357 |
MR 2970907
[16] Zeidler, E.:
Nonlinear Functional Analysis and Its Applications. I. Fixed-Point Theorems. Springer New York (1986).
MR 0816732 |
Zbl 0583.47050