Previous |  Up |  Next

Article

Title: On a Caginalp phase-field system with a logarithmic nonlinearity (English)
Author: Wehbe, Charbel
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 60
Issue: 4
Year: 2015
Pages: 355-382
Summary lang: English
.
Category: math
.
Summary: We consider a phase field system based on the Maxwell Cattaneo heat conduction law, with a logarithmic nonlinearity, associated with Dirichlet boundary conditions. In particular, we prove, in one and two space dimensions, the existence of a solution which is strictly separated from the singularities of the nonlinear term and that the problem possesses a finite-dimensional global attractor in terms of exponential attractors. (English)
Keyword: Caginalp phase-field system
Keyword: Dirichlet boundary conditions
Keyword: well-posedness
Keyword: long time behavior of solution
Keyword: global attractor
Keyword: exponential attractor
Keyword: Maxwell-Cattaneo law
Keyword: logarithmic potential
MSC: 35B40
MSC: 35B41
MSC: 35G30
MSC: 35K51
MSC: 35K55
MSC: 35Q53
MSC: 45K05
MSC: 80A20
MSC: 80A22
MSC: 92D50
idZBL: Zbl 06486916
idMR: MR3396470
DOI: 10.1007/s10492-015-0101-y
.
Date available: 2015-06-30T12:00:27Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144313
.
Reference: [1] Babin, A., Nicolaenko, B.: Exponential attractors for reaction-diffusion systems in an unbounded domain.J. Dyn. Differ. Equations 7 567-590 (1995). MR 1362671, 10.1007/BF02218725
Reference: [2] Brochet, D., Hilhorst, D.: Universal attractor and inertial sets for the phase field model.Appl. Math. Lett. 4 59-62 (1991). Zbl 0773.35028, MR 1136614, 10.1016/0893-9659(91)90076-8
Reference: [3] Brochet, D., Hilhorst, D., Chen, X.: Finite dimensional exponential attractor for the phase field model.Appl. Anal. 49 (1993), 197-212. Zbl 0790.35052, MR 1289743, 10.1080/00036819108840173
Reference: [4] Brochet, D., Hilhorst, D., Novick-Cohen, A.: Finite-dimensional exponential attractor for a model for order-disorder and phase separation.Appl. Math. Lett. 7 83-87 (1994). Zbl 0803.35076, MR 1350381, 10.1016/0893-9659(94)90118-X
Reference: [5] Caginalp, G.: An analysis of a phase field model of a free boundary.Arch. Ration. Mech. Anal. 92 205-245 (1986). Zbl 0608.35080, MR 0816623, 10.1007/BF00254827
Reference: [6] Caginalp, G.: The role of microscopic anisotropy in the macroscopic behavior of a phase boundary.Ann. Phys. 172 136-155 (1986). Zbl 0639.58038, MR 0912765, 10.1016/0003-4916(86)90022-9
Reference: [7] Cherfils, L., Miranville, A.: Some results on the asymptotic behavior of the Caginalp system with singular potentials.Adv. Math. Sci. Appl. 17 107-129 (2007). Zbl 1145.35042, MR 2337372
Reference: [8] Conti, M., Gatti, S., Miranville, A.: Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions.Discrete Contin. Dyn. Syst., Ser. S 5 485-505 (2012). Zbl 1244.35067, MR 2861821, 10.3934/dcdss.2012.5.485
Reference: [9] Fabrie, P., Galusinski, C.: Exponential attractors for partially dissipative reaction system.Asymptotic Anal. 12 329-354 (1996). MR 1402980, 10.3233/ASY-1996-12403
Reference: [10] Gajewski, H., Zacharias, K.: Global behaviour of a reaction-diffusion system modelling chemotaxis.Math. Nachr. 195 (1998), 77-114. Zbl 0918.35064, MR 1654677, 10.1002/mana.19981950106
Reference: [11] Grasselli, M., Miranville, A., Pata, V., Zelik, S.: Well-posedness and long time behavior of a parabolic-hyperbolic phase-field system with singular potentials.Math. Nachr. 280 1475-1509 (2007). Zbl 1133.35017, MR 2354975, 10.1002/mana.200510560
Reference: [12] Kufner, A., John, O., Fučík, S.: Function Spaces.Monographs and Textsbooks on Mechanics of Solids and Fluids. Mechanics: Analysis. Noordhoff International Publishing, Leyden Academia, Prague (1977). MR 0482102
Reference: [13] Landau, L. D., Lifschitz, E. M.: Course of Theoretical Physics. Vol. 1.Mechanics. Akademie Berlin German (1981).
Reference: [14] Miranville, A.: Exponential attractors for a class of evolution equations by a decomposition method.C. R. Acad. Sci., Paris, Sér. I, Math. 328 145-150 (1999), English. Abridged French version. Zbl 1141.35340, MR 1669003
Reference: [15] Miranville, A.: On a phase-field model with a logarithmic nonlinearity.Appl. Math., Praha 57 (2012), 215-229. Zbl 1265.35139, MR 2984601, 10.1007/s10492-012-0014-y
Reference: [16] Miranville, A.: Some mathematical models in phase transition.Discrete Contin. Dyn. Syst., Ser. S 7 271-306 (2014). Zbl 1275.35048, MR 3109473, 10.3934/dcdss.2014.7.271
Reference: [17] Miranville, A., Quintanilla, R.: A generalization of the Caginalp phase-field system based on the Cattaneo law.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 2278-2290 (2009). Zbl 1167.35304, MR 2524435, 10.1016/j.na.2009.01.061
Reference: [18] Miranville, A., Quintanilla, R.: Some generalizations of the Caginalp phase-field system.Appl. Anal. 88 877-894 (2009). Zbl 1178.35194, MR 2548940, 10.1080/00036810903042182
Reference: [19] Miranville, A., Zelik, S.: Robust exponential attractors for Cahn-Hilliard type equations with singular potentials.Math. Methods Appl. Sci. 27 (2004), 545-582. Zbl 1050.35113, MR 2041814, 10.1002/mma.464
Reference: [20] Miranville, A., Zelik, S.: Attractors for dissipative partial differential equations in bounded and unbounded domains.C. M. Dafermos et al. Handbook of Differential Equations: Evolutionary Equations. Vol. IV Elsevier/North-Holland Amsterdam 103-200 (2008). Zbl 1221.37158, MR 2508165
Reference: [21] Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics.Applied Mathematical Sciences 68 Springer, New York (1997). Zbl 0871.35001, MR 1441312, 10.1007/978-1-4612-0645-3
.

Files

Files Size Format View
AplMat_60-2015-4_2.pdf 338.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo