Title:
|
On a Caginalp phase-field system with a logarithmic nonlinearity (English) |
Author:
|
Wehbe, Charbel |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
60 |
Issue:
|
4 |
Year:
|
2015 |
Pages:
|
355-382 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider a phase field system based on the Maxwell Cattaneo heat conduction law, with a logarithmic nonlinearity, associated with Dirichlet boundary conditions. In particular, we prove, in one and two space dimensions, the existence of a solution which is strictly separated from the singularities of the nonlinear term and that the problem possesses a finite-dimensional global attractor in terms of exponential attractors. (English) |
Keyword:
|
Caginalp phase-field system |
Keyword:
|
Dirichlet boundary conditions |
Keyword:
|
well-posedness |
Keyword:
|
long time behavior of solution |
Keyword:
|
global attractor |
Keyword:
|
exponential attractor |
Keyword:
|
Maxwell-Cattaneo law |
Keyword:
|
logarithmic potential |
MSC:
|
35B40 |
MSC:
|
35B41 |
MSC:
|
35G30 |
MSC:
|
35K51 |
MSC:
|
35K55 |
MSC:
|
35Q53 |
MSC:
|
45K05 |
MSC:
|
80A20 |
MSC:
|
80A22 |
MSC:
|
92D50 |
idZBL:
|
Zbl 06486916 |
idMR:
|
MR3396470 |
DOI:
|
10.1007/s10492-015-0101-y |
. |
Date available:
|
2015-06-30T12:00:27Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144313 |
. |
Reference:
|
[1] Babin, A., Nicolaenko, B.: Exponential attractors for reaction-diffusion systems in an unbounded domain.J. Dyn. Differ. Equations 7 567-590 (1995). MR 1362671, 10.1007/BF02218725 |
Reference:
|
[2] Brochet, D., Hilhorst, D.: Universal attractor and inertial sets for the phase field model.Appl. Math. Lett. 4 59-62 (1991). Zbl 0773.35028, MR 1136614, 10.1016/0893-9659(91)90076-8 |
Reference:
|
[3] Brochet, D., Hilhorst, D., Chen, X.: Finite dimensional exponential attractor for the phase field model.Appl. Anal. 49 (1993), 197-212. Zbl 0790.35052, MR 1289743, 10.1080/00036819108840173 |
Reference:
|
[4] Brochet, D., Hilhorst, D., Novick-Cohen, A.: Finite-dimensional exponential attractor for a model for order-disorder and phase separation.Appl. Math. Lett. 7 83-87 (1994). Zbl 0803.35076, MR 1350381, 10.1016/0893-9659(94)90118-X |
Reference:
|
[5] Caginalp, G.: An analysis of a phase field model of a free boundary.Arch. Ration. Mech. Anal. 92 205-245 (1986). Zbl 0608.35080, MR 0816623, 10.1007/BF00254827 |
Reference:
|
[6] Caginalp, G.: The role of microscopic anisotropy in the macroscopic behavior of a phase boundary.Ann. Phys. 172 136-155 (1986). Zbl 0639.58038, MR 0912765, 10.1016/0003-4916(86)90022-9 |
Reference:
|
[7] Cherfils, L., Miranville, A.: Some results on the asymptotic behavior of the Caginalp system with singular potentials.Adv. Math. Sci. Appl. 17 107-129 (2007). Zbl 1145.35042, MR 2337372 |
Reference:
|
[8] Conti, M., Gatti, S., Miranville, A.: Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions.Discrete Contin. Dyn. Syst., Ser. S 5 485-505 (2012). Zbl 1244.35067, MR 2861821, 10.3934/dcdss.2012.5.485 |
Reference:
|
[9] Fabrie, P., Galusinski, C.: Exponential attractors for partially dissipative reaction system.Asymptotic Anal. 12 329-354 (1996). MR 1402980, 10.3233/ASY-1996-12403 |
Reference:
|
[10] Gajewski, H., Zacharias, K.: Global behaviour of a reaction-diffusion system modelling chemotaxis.Math. Nachr. 195 (1998), 77-114. Zbl 0918.35064, MR 1654677, 10.1002/mana.19981950106 |
Reference:
|
[11] Grasselli, M., Miranville, A., Pata, V., Zelik, S.: Well-posedness and long time behavior of a parabolic-hyperbolic phase-field system with singular potentials.Math. Nachr. 280 1475-1509 (2007). Zbl 1133.35017, MR 2354975, 10.1002/mana.200510560 |
Reference:
|
[12] Kufner, A., John, O., Fučík, S.: Function Spaces.Monographs and Textsbooks on Mechanics of Solids and Fluids. Mechanics: Analysis. Noordhoff International Publishing, Leyden Academia, Prague (1977). MR 0482102 |
Reference:
|
[13] Landau, L. D., Lifschitz, E. M.: Course of Theoretical Physics. Vol. 1.Mechanics. Akademie Berlin German (1981). |
Reference:
|
[14] Miranville, A.: Exponential attractors for a class of evolution equations by a decomposition method.C. R. Acad. Sci., Paris, Sér. I, Math. 328 145-150 (1999), English. Abridged French version. Zbl 1141.35340, MR 1669003 |
Reference:
|
[15] Miranville, A.: On a phase-field model with a logarithmic nonlinearity.Appl. Math., Praha 57 (2012), 215-229. Zbl 1265.35139, MR 2984601, 10.1007/s10492-012-0014-y |
Reference:
|
[16] Miranville, A.: Some mathematical models in phase transition.Discrete Contin. Dyn. Syst., Ser. S 7 271-306 (2014). Zbl 1275.35048, MR 3109473, 10.3934/dcdss.2014.7.271 |
Reference:
|
[17] Miranville, A., Quintanilla, R.: A generalization of the Caginalp phase-field system based on the Cattaneo law.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 2278-2290 (2009). Zbl 1167.35304, MR 2524435, 10.1016/j.na.2009.01.061 |
Reference:
|
[18] Miranville, A., Quintanilla, R.: Some generalizations of the Caginalp phase-field system.Appl. Anal. 88 877-894 (2009). Zbl 1178.35194, MR 2548940, 10.1080/00036810903042182 |
Reference:
|
[19] Miranville, A., Zelik, S.: Robust exponential attractors for Cahn-Hilliard type equations with singular potentials.Math. Methods Appl. Sci. 27 (2004), 545-582. Zbl 1050.35113, MR 2041814, 10.1002/mma.464 |
Reference:
|
[20] Miranville, A., Zelik, S.: Attractors for dissipative partial differential equations in bounded and unbounded domains.C. M. Dafermos et al. Handbook of Differential Equations: Evolutionary Equations. Vol. IV Elsevier/North-Holland Amsterdam 103-200 (2008). Zbl 1221.37158, MR 2508165 |
Reference:
|
[21] Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics.Applied Mathematical Sciences 68 Springer, New York (1997). Zbl 0871.35001, MR 1441312, 10.1007/978-1-4612-0645-3 |
. |