Title:
|
Hyers-Ulam stability of fractional linear differential equations involving Caputo fractional derivatives (English) |
Author:
|
Wang, Chun |
Author:
|
Xu, Tian-Zhou |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
60 |
Issue:
|
4 |
Year:
|
2015 |
Pages:
|
383-393 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The aim of this paper is to study the stability of fractional differential equations in Hyers-Ulam sense. Namely, if we replace a given fractional differential equation by a fractional differential inequality, we ask when the solutions of the fractional differential inequality are close to the solutions of the strict differential equation. In this paper, we investigate the Hyers-Ulam stability of two types of fractional linear differential equations with Caputo fractional derivatives. We prove that the two types of fractional linear differential equations are Hyers-Ulam stable by applying the Laplace transform method. Finally, an example is given to illustrate the theoretical results. (English) |
Keyword:
|
Hyers-Ulam stability |
Keyword:
|
Laplace transform method |
Keyword:
|
fractional differential equation |
Keyword:
|
Caputo fractional derivative |
MSC:
|
26D10 |
MSC:
|
34A08 |
idZBL:
|
Zbl 06486917 |
idMR:
|
MR3396471 |
DOI:
|
10.1007/s10492-015-0102-x |
. |
Date available:
|
2015-06-30T12:01:51Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144314 |
. |
Reference:
|
[1] András, S., Mészáros, A. R.: Ulam-Hyers stability of dynamic equations on time scales via Picard operators.Appl. Math. Comput. 219 (2013), 4853-4864. MR 3001534, 10.1016/j.amc.2012.10.115 |
Reference:
|
[2] Gordji, M. Eshaghi, Cho, Y. J., Ghaemi, M. B., Alizadeh, B.: Stability of the second order partial differential equations.J. Inequal. Appl. (electronic only) 2011 (2011), Article ID 81, 10 pages. MR 2847591 |
Reference:
|
[3] Hegyi, B., Jung, S.-M.: On the stability of Laplace's equation.Appl. Math. Lett. 26 (2013), 549-552. Zbl 1266.35014, MR 3027761, 10.1016/j.aml.2012.12.014 |
Reference:
|
[4] Ibrahim, R. W.: Ulam stability of boundary value problem.Kragujevac J. Math. 37 (2013), 287-297. Zbl 1299.30031, MR 3150866 |
Reference:
|
[5] Jung, S.-M.: Hyers-Ulam stability of linear differential equations of first order.Appl. Math. Lett. 17 (2004), 1135-1140. Zbl 1061.34039, MR 2091847, 10.1016/j.aml.2003.11.004 |
Reference:
|
[6] Jung, S.-M.: Hyers-Ulam stability of linear differential equations of first order. III.J. Math. Anal. Appl. 311 (2005), 139-146. Zbl 1087.34534, MR 2165468, 10.1016/j.jmaa.2005.02.025 |
Reference:
|
[7] Jung, S.-M.: Hyers-Ulam stability of linear differential equations of first order. II.Appl. Math. Lett. 19 (2006), 854-858. Zbl 1125.34328, MR 2240474, 10.1016/j.aml.2005.11.004 |
Reference:
|
[8] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations.North-Holland Mathematics Studies 204 Elsevier, Amsterdam (2006). Zbl 1092.45003, MR 2218073 |
Reference:
|
[9] Lungu, N., Popa, D.: Hyers-Ulam stability of a first order partial differential equation.J. Math. Anal. Appl. 385 (2012), 86-91. Zbl 1265.26055, MR 2832076, 10.1016/j.jmaa.2011.06.025 |
Reference:
|
[10] Popa, D., Raşa, I.: On the Hyers-Ulam stability of the linear differential equation.J. Math. Anal. Appl. 381 (2011), 530-537. Zbl 1222.34069, MR 2802090, 10.1016/j.jmaa.2011.02.051 |
Reference:
|
[11] Rezaei, H., Jung, S.-M., Rassias, T. M.: Laplace transform and Hyers-Ulam stability of linear differential equations.J. Math. Anal. Appl. 403 (2013), 244-251. Zbl 1286.34077, MR 3035088, 10.1016/j.jmaa.2013.02.034 |
Reference:
|
[12] Wang, J., Lv, L., Zhou, Y.: New concepts and results in stability of fractional differential equations.Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 2530-2538. Zbl 1252.35276, MR 2877697, 10.1016/j.cnsns.2011.09.030 |
Reference:
|
[13] Wang, J., Zhang, Y.: A class of nonlinear differential equations with fractional integrable impulses.Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 3001-3010. MR 3182874, 10.1016/j.cnsns.2014.01.016 |
Reference:
|
[14] Wang, J., Zhou, Y.: Mittag-Leffler-Ulam stabilities of fractional evolution equations.Appl. Math. Lett. 25 (2012), 723-728. Zbl 1246.34012, MR 2875807, 10.1016/j.aml.2011.10.009 |
. |