Previous |  Up |  Next

Article

Title: Hyers-Ulam stability of fractional linear differential equations involving Caputo fractional derivatives (English)
Author: Wang, Chun
Author: Xu, Tian-Zhou
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 60
Issue: 4
Year: 2015
Pages: 383-393
Summary lang: English
.
Category: math
.
Summary: The aim of this paper is to study the stability of fractional differential equations in Hyers-Ulam sense. Namely, if we replace a given fractional differential equation by a fractional differential inequality, we ask when the solutions of the fractional differential inequality are close to the solutions of the strict differential equation. In this paper, we investigate the Hyers-Ulam stability of two types of fractional linear differential equations with Caputo fractional derivatives. We prove that the two types of fractional linear differential equations are Hyers-Ulam stable by applying the Laplace transform method. Finally, an example is given to illustrate the theoretical results. (English)
Keyword: Hyers-Ulam stability
Keyword: Laplace transform method
Keyword: fractional differential equation
Keyword: Caputo fractional derivative
MSC: 26D10
MSC: 34A08
idZBL: Zbl 06486917
idMR: MR3396471
DOI: 10.1007/s10492-015-0102-x
.
Date available: 2015-06-30T12:01:51Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144314
.
Reference: [1] András, S., Mészáros, A. R.: Ulam-Hyers stability of dynamic equations on time scales via Picard operators.Appl. Math. Comput. 219 (2013), 4853-4864. MR 3001534, 10.1016/j.amc.2012.10.115
Reference: [2] Gordji, M. Eshaghi, Cho, Y. J., Ghaemi, M. B., Alizadeh, B.: Stability of the second order partial differential equations.J. Inequal. Appl. (electronic only) 2011 (2011), Article ID 81, 10 pages. MR 2847591
Reference: [3] Hegyi, B., Jung, S.-M.: On the stability of Laplace's equation.Appl. Math. Lett. 26 (2013), 549-552. Zbl 1266.35014, MR 3027761, 10.1016/j.aml.2012.12.014
Reference: [4] Ibrahim, R. W.: Ulam stability of boundary value problem.Kragujevac J. Math. 37 (2013), 287-297. Zbl 1299.30031, MR 3150866
Reference: [5] Jung, S.-M.: Hyers-Ulam stability of linear differential equations of first order.Appl. Math. Lett. 17 (2004), 1135-1140. Zbl 1061.34039, MR 2091847, 10.1016/j.aml.2003.11.004
Reference: [6] Jung, S.-M.: Hyers-Ulam stability of linear differential equations of first order. III.J. Math. Anal. Appl. 311 (2005), 139-146. Zbl 1087.34534, MR 2165468, 10.1016/j.jmaa.2005.02.025
Reference: [7] Jung, S.-M.: Hyers-Ulam stability of linear differential equations of first order. II.Appl. Math. Lett. 19 (2006), 854-858. Zbl 1125.34328, MR 2240474, 10.1016/j.aml.2005.11.004
Reference: [8] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations.North-Holland Mathematics Studies 204 Elsevier, Amsterdam (2006). Zbl 1092.45003, MR 2218073
Reference: [9] Lungu, N., Popa, D.: Hyers-Ulam stability of a first order partial differential equation.J. Math. Anal. Appl. 385 (2012), 86-91. Zbl 1265.26055, MR 2832076, 10.1016/j.jmaa.2011.06.025
Reference: [10] Popa, D., Raşa, I.: On the Hyers-Ulam stability of the linear differential equation.J. Math. Anal. Appl. 381 (2011), 530-537. Zbl 1222.34069, MR 2802090, 10.1016/j.jmaa.2011.02.051
Reference: [11] Rezaei, H., Jung, S.-M., Rassias, T. M.: Laplace transform and Hyers-Ulam stability of linear differential equations.J. Math. Anal. Appl. 403 (2013), 244-251. Zbl 1286.34077, MR 3035088, 10.1016/j.jmaa.2013.02.034
Reference: [12] Wang, J., Lv, L., Zhou, Y.: New concepts and results in stability of fractional differential equations.Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 2530-2538. Zbl 1252.35276, MR 2877697, 10.1016/j.cnsns.2011.09.030
Reference: [13] Wang, J., Zhang, Y.: A class of nonlinear differential equations with fractional integrable impulses.Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 3001-3010. MR 3182874, 10.1016/j.cnsns.2014.01.016
Reference: [14] Wang, J., Zhou, Y.: Mittag-Leffler-Ulam stabilities of fractional evolution equations.Appl. Math. Lett. 25 (2012), 723-728. Zbl 1246.34012, MR 2875807, 10.1016/j.aml.2011.10.009
.

Files

Files Size Format View
AplMat_60-2015-4_3.pdf 241.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo