Previous |  Up |  Next

Article

Title: Existence of solutions and approximate controllability of impulsive fractional stochastic differential systems with infinite delay and Poisson jumps (English)
Author: Rajivganthi, Chinnathambi
Author: Thiagu, Krishnan
Author: Muthukumar, Palanisamy
Author: Balasubramaniam, Pagavathigounder
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 60
Issue: 4
Year: 2015
Pages: 395-419
Summary lang: English
.
Category: math
.
Summary: The paper is motivated by the study of interesting models from economics and the natural sciences where the underlying randomness contains jumps. Stochastic differential equations with Poisson jumps have become very popular in modeling the phenomena arising in the field of financial mathematics, where the jump processes are widely used to describe the asset and commodity price dynamics. This paper addresses the issue of approximate controllability of impulsive fractional stochastic differential systems with infinite delay and Poisson jumps in Hilbert spaces under the assumption that the corresponding linear system is approximately controllable. The existence of mild solutions of the fractional dynamical system is proved by using the Banach contraction principle and Krasnoselskii's fixed-point theorem. More precisely, sufficient conditions for the controllability results are established by using fractional calculations, sectorial operator theory and stochastic analysis techniques. Finally, examples are provided to illustrate the applications of the main results. (English)
Keyword: approximate controllability
Keyword: fixed-point theorem
Keyword: fractional stochastic differential system
Keyword: Hilbert space, Poisson jumps
MSC: 34K50
MSC: 93B05
MSC: 93E03
idZBL: Zbl 06486918
idMR: MR3396472
DOI: 10.1007/s10492-015-0103-9
.
Date available: 2015-06-30T12:04:29Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144315
.
Reference: [1] Balasubramaniam, P., Vembarasan, V., Senthilkumar, T.: Approximate controllability of impulsive fractional integro-differential systems with nonlocal conditions in Hilbert space.Numer. Funct. Anal. Optim. 35 (2014), 177-197. Zbl 1288.34074, MR 3175636, 10.1080/01630563.2013.811420
Reference: [2] Caputo, M.: Elasticità e dissipazione.Zanichelli Publisher, Bologna Italian (1969).
Reference: [3] Cont, R., Tankov, P.: Financial Modelling with Jump Processes.Chapman & Hall/CRC Financial Mathematics Series Chapman & Hall/CRC, Boca Raton (2004). Zbl 1052.91043, MR 2042661
Reference: [4] Cui, J., Yan, L.: Existence result for fractional neutral stochastic integro-differential equations with infinite delay.J. Phys. A, Math. Theor. 44 (2011), Article ID 335201, 16 pages. Zbl 1232.34107, MR 2822114
Reference: [5] Cui, J., Yan, L.: Successive approximation of neutral stochastic evolution equations with infinite delay and Poisson jumps.Appl. Math. Comput. 218 (2012), 6776-6784. Zbl 1248.34120, MR 2880333, 10.1016/j.amc.2011.12.045
Reference: [6] Prato, G. Da, Zabczyk, J.: Stochastic Equations in Infinite Dimensions.Encyclopedia of Mathematics and Its Applications 44 Cambridge University Press, Cambridge (1992). Zbl 0761.60052, MR 1207136
Reference: [7] Dabas, J., Chauhan, A., Kumar, M.: Existence of the mild solutions for impulsive fractional equations with infinite delay.Int. J. Differ. Equ. 2011 (2011), Article ID 793023, 20 pages. Zbl 1239.34094, MR 2843512
Reference: [8] El-Borai, M. M., El-Nadi, K. E.-S., Fouad, H. A.: On some fractional stochastic delay differential equations.Comput. Math. Appl. 59 (2010), 1165-1170. Zbl 1189.60117, MR 2579480, 10.1016/j.camwa.2009.05.004
Reference: [9] Hasse, M.: The Functional Calculus for Sectorial Operators.Operator theory: Advances and Applications. Vol. 196 Birkhäuser, Basel (2006). MR 2244037
Reference: [10] Hausenblas, E., Marchis, I.: A numerical approximation of parabolic stochastic partial differential equations driven by a Poisson random measure.BIT 46 (2006), 773-811. Zbl 1112.65004, MR 2285208, 10.1007/s10543-006-0099-3
Reference: [11] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations.North-Holland Mathematics Studies 204 Elsevier, Amsterdam (2006). Zbl 1092.45003, MR 2218073
Reference: [12] Kolmanovskii, V., Myshkis, A.: Applied Theory of Functional Differential Equations.Mathematics and Its Applications. Soviet Series 85 Kluwer Academic Publishers, Dordrecht (1992). MR 1256486
Reference: [13] Lakshmikantham, V., Bainov, D. D., Simeonov, P. S.: Theory of Impulsive Differential Equations.Series in Modern Applied Mathematics 6 World Scientific, Singapore (1989). Zbl 0719.34002, MR 1082551
Reference: [14] Liu, J., Yan, L., Cang, Y.: On a jump-type stochastic fractional partial differential equation with fractional noises.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 6060-6070. Zbl 1246.35215, MR 2956125, 10.1016/j.na.2012.06.012
Reference: [15] Long, H., Hu, J., Li, Y.: Approximate controllability of stochastic PDE with infinite delays driven by Poisson jumps.IEEE International Conference on Information Science and Technology. Wuhan, Hubei, China (2012), 23-25.
Reference: [16] Mahmudov, N. I.: Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces.SIAM J. Control Optim. 42 (2003), 1604-1622. Zbl 1084.93006, MR 2046377, 10.1137/S0363012901391688
Reference: [17] Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations.A Wiley-Interscience Publication John Wiley & Sons, New York (1993). Zbl 0789.26002, MR 1219954
Reference: [18] Muthukumar, P., Rajivganthi, C.: Approximate controllability of fractional order stochastic variational inequalities driven by Poisson jumps.Taiwanese J. Math. 18 (2014), 1721-1738. MR 3284028, 10.11650/tjm.18.2014.3885
Reference: [19] Ren, Y., Zhou, Q., Chen, L.: Existence, uniqueness and stability of mild solutions for time-dependent stochastic evolution equations with Poisson jumps and infinite delay.J. Optim. Theory Appl. 149 (2011), 315-331. Zbl 1241.34089, MR 2787714, 10.1007/s10957-010-9792-0
Reference: [20] Sakthivel, R., Ganesh, R., Ren, Y., Anthoni, S. M.: Approximate controllability of nonlinear fractional dynamical systems.Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 3498-3508. MR 3081379, 10.1016/j.cnsns.2013.05.015
Reference: [21] Sakthivel, R., Ren, Y.: Complete controllability of stochastic evolution equations with jumps.Rep. Math. Phys. 68 (2011), 163-174. Zbl 1244.93028, MR 2900843, 10.1016/S0034-4877(12)60003-2
Reference: [22] Sakthivel, R., Revathi, P., Ren, Y.: Existence of solutions for nonlinear fractional stochastic differential equations.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 81 (2013), 70-86. Zbl 1261.34063, MR 3016441, 10.1016/j.na.2012.10.009
Reference: [23] Sakthivel, R., Suganya, S., Anthoni, S. M.: Approximate controllability of fractional stochastic evolution equations.Comput. Math. Appl. 63 (2012), 660-668. Zbl 1238.93099, MR 2871665, 10.1016/j.camwa.2011.11.024
Reference: [24] Shu, X.-B., Wang, Q.: The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order $1<\alpha<2$.Comput. Math. Appl. 64 (2012), 2100-2110. Zbl 1268.34155, MR 2960829, 10.1016/j.camwa.2012.04.006
Reference: [25] Sukavanam, N., Kumar, S.: Approximate controllability of fractional order semilinear delay systems.J. Optim. Theory Appl. 151 (2011), 373-384. Zbl 1251.93039, MR 2852407, 10.1007/s10957-011-9905-4
Reference: [26] Tai, Z., Wang, X.: Controllability of fractional-order impulsive neutral functional infinite delay integrodifferential systems in Banach spaces.Appl. Math. Lett. 22 (2009), 1760-1765. Zbl 1181.34078, MR 2560992, 10.1016/j.aml.2009.06.017
Reference: [27] Taniguchi, T., Luo, J.: The existence and asymptotic behaviour of mild solutions to stochastic evolution equations with infinite delays driven by Poisson jumps.Stoch. Dyn. 9 (2009), 217-229. Zbl 1181.60102, MR 2531628, 10.1142/S0219493709002646
Reference: [28] Triggiani, R.: A note on the lack of exact controllability for mild solutions in Banach spaces.SIAM J. Control Optim. 15 (1977), 407-411. Zbl 0354.93014, MR 0435991, 10.1137/0315028
Reference: [29] Zhao, H.: On existence and uniqueness of stochastic evolution equation with Poisson jumps.Stat. Probab. Lett. 79 (2009), 2367-2373. Zbl 1182.60018, MR 2556370, 10.1016/j.spl.2009.08.006
.

Files

Files Size Format View
AplMat_60-2015-4_4.pdf 354.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo