Previous |  Up |  Next

Article

Title: An analysis of the stability boundary for a linear fractional difference system (English)
Author: Kisela, Tomáš
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 140
Issue: 2
Year: 2015
Pages: 195-203
Summary lang: English
.
Category: math
.
Summary: This paper deals with basic stability properties of a two-term linear autonomous fractional difference system involving the Riemann-Liouville difference. In particular, we focus on the case when eigenvalues of the system matrix lie on a boundary curve separating asymptotic stability and unstability regions. This issue was posed as an open problem in the paper J. Čermák, T. Kisela, and L. Nechvátal (2013). Thus, the paper completes the stability analysis of the corresponding fractional difference system. (English)
Keyword: fractional difference system
Keyword: stability
Keyword: Laplace transform
MSC: 26A33
MSC: 34A08
MSC: 39A06
MSC: 39A12
MSC: 39A30
idZBL: Zbl 06486933
idMR: MR3368493
DOI: 10.21136/MB.2015.144325
.
Date available: 2015-06-30T12:18:22Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144325
.
Reference: [1] Akin-Bohner, E., Bohner, M.: Exponential functions and Laplace transforms for alpha derivates.New Progress in Difference Equations. Proc. of the 6th International Conf. on Difference Equations, Augsburg, Germany, 2001 CRC Press Boca Raton (2004), 231-237 B. Aulbach et al. Zbl 1066.39014, MR 2092559
Reference: [2] Atıcı, F. M., Eloe, P.: Discrete fractional calculus with the nabla operator.Electron. J. Qual. Theory Differ. Equ. (electronic only), Special Issue I (2009), Article No. 3, 12 pages. Zbl 1189.39004, MR 2558828
Reference: [3] Čermák, J., Kisela, T., Nechvátal, L.: Stability regions for linear fractional differential systems and their discretizations.Appl. Math. Comput. 219 (2013), 7012-7022. Zbl 1288.34005, MR 3027865, 10.1016/j.amc.2012.12.019
Reference: [4] Čermák, J., Kisela, T., Nechvátal, L.: Stability and asymptotic properties of a linear fractional difference equation.Adv. Difference Equ. (electronic only) (2012),2012:122 14 pages. MR 2972648
Reference: [5] Čermák, J., Nechvátal, L.: On $(q, h)$-analogue of fractional calculus.J. Nonlinear Math. Phys. 17 (2010), 51-68. Zbl 1189.26006, MR 2647460, 10.1142/S1402925110000593
Reference: [6] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations.North-Holland Mathematics Studies 204 Elsevier, Amsterdam (2006). Zbl 1092.45003, MR 2218073
Reference: [7] Li, C. P., Zhang, F. R.: A survey on the stability of fractional differential equations.Eur. Phys. J. Special Topics 193 (2011), 27-47. 10.1140/epjst/e2011-01379-1
Reference: [8] Lubich, C.: A stability analysis of convolution quadratures for Abel-Volterra integral equations.IMA J. Numer. Anal. 6 (1986), 87-101. Zbl 0587.65090, MR 0967683, 10.1093/imanum/6.1.87
Reference: [9] Matignon, D.: Stability results for fractional differential equations with applications to control processing.Computational Engineering in Systems Applications, Lille, France (1996), 963-968.
Reference: [10] Mozyrska, D., Girejko, E.: Overview of fractional $h$-difference operators.Advances in Harmonic Analysis and Operator Theory. Mainly based on the presentations at two conferences, Lisbon and Aveiro, Portugal, 2011 Oper. Theory Adv. Appl. 229 Birkhäuser, Basel (2013), 253-268 A. Almeida et al. Zbl 1262.39024, MR 3060418
Reference: [11] Oldham, K. B., Myland, J., Spanier, J.: An Atlas of Functions. With Equator, the Atlas Function Calculator.Springer, New York (2008). Zbl 1167.65001, MR 2466333
Reference: [12] Petráš, I.: Stability of fractional-order systems with rational orders: A survey.Fract. Calc. Appl. Anal. 12 (2009), 269-298. Zbl 1182.26017, MR 2572711
Reference: [13] Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications.Mathematics in Science and Engineering 198 Academic Press, San Diego (1999). Zbl 0924.34008, MR 1658022
Reference: [14] Qian, D., Li, C., Agarwal, R. P., Wong, P. J. Y.: Stability analysis of fractional differential system with Riemann-Liouville derivative.Math. Comput. Modelling 52 (2010), 862-874. Zbl 1202.34020, MR 2661771, 10.1016/j.mcm.2010.05.016
.

Files

Files Size Format View
MathBohem_140-2015-2_7.pdf 247.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo