Previous |  Up |  Next

Article

Title: Generalized trigonometric functions in complex domain (English)
Author: Girg, Petr
Author: Kotrla, Lukáš
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 140
Issue: 2
Year: 2015
Pages: 223-239
Summary lang: English
.
Category: math
.
Summary: We study extension of $p$-trigonometric functions $\sin _p$ and $\cos _p$ to complex domain. For $p=4, 6, 8, \dots $, the function $\sin _p$ satisfies the initial value problem which is equivalent to (*) $$-(u')^{p-2}u''-u^{p-1} =0, \quad u(0)=0, \quad u'(0)=1 $$in $\mathbb {R}$. In our recent paper, Girg, Kotrla (2014), we showed that $\sin _p(x)$ is a real analytic function for $p=4, 6, 8, \dots $ on $(-\pi _p/2, \pi _p/2)$, where $\pi _p/2 = \int _0^1(1-s^p)^{-1/p}$. This allows us to extend $\sin _p$ to complex domain by its Maclaurin series convergent on the disc $\{z\in \mathbb {C}\colon |z|<\pi _p/2\}$. The question is whether this extensions $\sin _p(z)$ satisfies (*) in the sense of differential equations in complex domain. This interesting question was posed by Došlý and we show that the answer is affirmative. We also discuss the difficulties concerning the extension of $\sin _p$ to complex domain for $p=3,5,7,\dots $ Moreover, we show that the structure of the complex valued initial value problem (*) does not allow entire solutions for any $p\in \mathbb {N}$, $p>2$. Finally, we provide some graphs of real and imaginary parts of $\sin _p(z)$ and suggest some new conjectures. (English)
Keyword: $p$-Laplacian
Keyword: differential equations in complex domain
Keyword: extension of $\sin _p$
MSC: 33E20
MSC: 33E30
MSC: 34B15
MSC: 34M05
MSC: 34M99
idZBL: Zbl 06486936
idMR: MR3368496
DOI: 10.21136/MB.2015.144328
.
Date available: 2015-06-30T12:21:57Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144328
.
Reference: [1] Burckel, R. B.: An Introduction to Classical Complex Analysis. Vol. 1.Pure and Applied Mathematics 82 Academic Press, New York (1979). Zbl 0434.30002, MR 0555733
Reference: [2] Pino, M. A. del, Elgueta, M., Manásevich, R.: A homotopic deformation along $p$of a Leray-Schauder degree result and existence for $(|u'|^{p-2}u')'+f(t,u)=0$, $u(0)=u(T)=0$, $p>1$.J. Differ. Equations 80 (1989), 1-13. MR 1003248, 10.1016/0022-0396(89)90093-4
Reference: [3] Elbert, Á.: A half-linear second order differential equation.Qualitative Theory of Differential Equations, Vol. I, Szeged, 1979 Colloq. Math. Soc. János Bolyai 30 North-Holland, Amsterdam (1981), 153-180 M. Farkas. Zbl 0511.34006, MR 0680591
Reference: [4] Girg, P., Kotrla, L.: Differentiability properties of $p$-trigonometric functions.Electron. J. Differ. Equ. (electronic only) 2014 (2014), 101-127. Zbl 1291.33021, MR 3344567
Reference: [5] Henrici, P.: Applied and Computational Complex Analysis. Vol. 2: Special Functions-Integral Transforms-Asymptotics-Continued Fractions.Wiley Classics Library John Wiley & Sons, New York (1991). Zbl 0925.30003, MR 1164865
Reference: [6] Jarník, V.: Differential Equations in the Complex Domain.Academia, Praha Czech (1975). MR 0460758
Reference: [7] Lindqvist, P.: Some remarkable sine and cosine functions.Ric. Mat. 44 (1995), 269-290. Zbl 0944.33002, MR 1469702
Reference: [8] Markushevich, A. I.: Theory of Functions of a Complex Variable. Three Volumes. Translated and edited by Richard A. Silverman.Chelsea Publishing, New York (1977). MR 0444912
Reference: [9] Wei, D., Liu, Y., Elgindi, M. B.: Some generalized trigonometric sine functions and their applications.Appl. Math. Sci., Ruse 6 (2012), 6053-6068. Zbl 1262.42001, MR 2981055
Reference: [10] Drexel, The Math Forum @: Discussion: ``Entire solutions of $f^2+g^2=1$'' of A. Horwitz, P. Vojta, R. Israel, H. P. Boas, B. Dubuque. http://mathforum.org/kb/message.jspa?messageID=21242..
.

Files

Files Size Format View
MathBohem_140-2015-2_10.pdf 1.338Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo