Title:
|
On the linear problem arising from motion of a fluid around a moving rigid body (English) |
Author:
|
Nečasová, Šárka |
Author:
|
Wolf, Jörg |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
140 |
Issue:
|
2 |
Year:
|
2015 |
Pages:
|
241-259 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study a linear system of equations arising from fluid motion around a moving rigid body, where rotation is included. Originally, the coordinate system is attached to the fluid, which means that the domain is changing with respect to time. To get a problem in the fixed domain, the problem is rewritten in the coordinate system attached to the body. The aim of the present paper is the proof of the existence of a strong solution in a weighted Lebesgue space. In particular, we prove the existence of a global pressure gradient in $L^2$. (English) |
Keyword:
|
incompressible fluid |
Keyword:
|
rotating rigid body |
Keyword:
|
strong solution |
MSC:
|
35Q35 |
MSC:
|
76D05 |
idZBL:
|
Zbl 06486937 |
idMR:
|
MR3368497 |
DOI:
|
10.21136/MB.2015.144329 |
. |
Date available:
|
2015-06-30T12:23:55Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144329 |
. |
Reference:
|
[1] Borchers, W.: Zur Stabilität und Faktorisienrungsmethode für die Navier-Stokes Gleichungen inkompressibler viskoser Flüssigkeiten.Habilitationsschrift University of Paderborn (1992), German. |
Reference:
|
[2] Chen, Z.-M., Miyakawa, T.: Decay properties of weak solutions to a perturbed Navier-Stokes system in {$\mathbb R^n$}.Adv. Math. Sci. Appl. 7 (1997), 741-770. MR 1476275 |
Reference:
|
[3] Cumsille, P., Takahashi, T.: Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid.Czech. Math. J. 58 (2008), 961-992. Zbl 1174.35092, MR 2471160, 10.1007/s10587-008-0063-2 |
Reference:
|
[4] Cumsille, P., Tucsnak, M.: Wellposedness for the Navier-Stokes flow in the exterior of a rotating obstacle.Math. Methods Appl. Sci. 29 (2006), 595-623. MR 2205973, 10.1002/mma.702 |
Reference:
|
[5] Dintelmann, E., Geissert, M., Hieber, M.: Strong $L^p$-solutions to the Navier-Stokes flow past moving obstacles: The case of several obstacles and time dependent velocity.Trans. Am. Math. Soc. 361 (2009), 653-669. Zbl 1156.76016, MR 2452819, 10.1090/S0002-9947-08-04684-9 |
Reference:
|
[6] Galdi, G. P.: On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications.Handbook of Mathematical Fluid Dynamics 1 Elsevier Amsterdam (2002), 653-791 S. Friedlander et al. Zbl 1230.76016, MR 1942470 |
Reference:
|
[7] Galdi, G. P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations I. Linearized Steady Problems.Springer Tracts in Natural Philosophy 38 Springer, New York (1994). MR 1284205 |
Reference:
|
[8] Galdi, G. P., Silvestre, A. L.: Strong solutions to the Navier-Stokes equations around a rotating obstacle.Arch. Ration. Mech. Anal. 176 (2005), 331-350. Zbl 1081.35076, MR 2185661, 10.1007/s00205-004-0348-z |
Reference:
|
[9] Galdi, G. P., Silvestre, A. L.: Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques.Nonlinear Problems in Mathematical Physics and Related Topics I. Int. Math. Ser. (N. Y.) 1 Kluwer Academic/Plenum Publishers, New York (2002), 121-144 M. S. Birman et al. Zbl 1046.35084, MR 1970608, 10.1007/978-1-4615-0777-2_8 |
Reference:
|
[10] Geissert, M., Heck, H., Hieber, M.: $L^p$-theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle.J. Reine Angew. Math. 596 (2006), 45-62. Zbl 1102.76015, MR 2254804 |
Reference:
|
[11] Hishida, T.: An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle.Arch. Ration. Mech. Anal. 150 (1999), 307-348. Zbl 0949.35106, MR 1741259, 10.1007/s002050050190 |
Reference:
|
[12] Hishida, T., Shibata, Y.: $L_p$-$L_q$ estimate of the Stokes operator and Navier-Stokes flows in the exterior of a rotating obstacle.Arch. Ration. Mech. Anal. 193 (2009), 339-421. Zbl 1169.76015, MR 2525121, 10.1007/s00205-008-0130-8 |
Reference:
|
[13] Inoue, A., Wakimoto, M.: On existence of solutions of the Navier-Stokes equation in a time dependent domain.J. Fac. Sci., Univ. Tokyo, Sect. I A 24 (1977), 303-319. Zbl 0381.35066, MR 0481649 |
Reference:
|
[14] Ladyzhenskaya, O. A.: An initial-boundary value problem for the Navier-Stokes equations in domains with boundary changing in time.Semin. Math., V. A. Steklov Math. Inst., Leningrad 11 (1968), 35-46 translation from Zap. Nauchn. Semin. Leningrad. Otdel. Mat. Inst. Steklov. 11 (1968), 97-128 Russian. MR 0416222 |
Reference:
|
[15] Neustupa, J.: Existence of a weak solution to the Navier-Stokes equation in a general time-varying domain by the Rothe method.Math. Methods Appl. Sci. 32 (2009), 653-683. Zbl 1160.35494, MR 2504002, 10.1002/mma.1059 |
Reference:
|
[16] Neustupa, J., Penel, P.: A weak solvability of the Navier-Stokes equation with Navier's boundary condition around a ball striking the wall.Advances in Mathematical Fluid Mechanics Springer, Berlin (2010), 385-407 R. Rannacher et al. MR 2665044 |
Reference:
|
[17] Neustupa, J., Penel, P.: A weak solution to the Navier-Stokes system with Navier's boundary condition in a time varying domain.Accepted to ``Recent Developments of Mathematical Fluid Mechanics'', Series: Advances in Math. Fluid Mech. Birkhäuser G. P. Galdi, J. G. Heywood, R. Rannacher. |
Reference:
|
[18] Serre, D.: Free fall of a rigid body in an incompressible viscous fluid. Existence.Japan J. Appl. Math. 4 French (1987), 99-110. MR 0899206 |
Reference:
|
[19] Takahashi, T.: Existence of strong solutions for the problem of a rigid-fluid system.C. R., Math., Acad. Sci. Paris 336 (2003), 453-458. Zbl 1044.35062, MR 1979363, 10.1016/S1631-073X(03)00081-5 |
Reference:
|
[20] Takahashi, T., Tucsnak, M.: Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid.J. Math. Fluid Mech. 6 (2004), 53-77. Zbl 1054.35061, MR 2027754, 10.1007/s00021-003-0083-4 |
. |