Previous |  Up |  Next

Article

Title: On the linear problem arising from motion of a fluid around a moving rigid body (English)
Author: Nečasová, Šárka
Author: Wolf, Jörg
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 140
Issue: 2
Year: 2015
Pages: 241-259
Summary lang: English
.
Category: math
.
Summary: We study a linear system of equations arising from fluid motion around a moving rigid body, where rotation is included. Originally, the coordinate system is attached to the fluid, which means that the domain is changing with respect to time. To get a problem in the fixed domain, the problem is rewritten in the coordinate system attached to the body. The aim of the present paper is the proof of the existence of a strong solution in a weighted Lebesgue space. In particular, we prove the existence of a global pressure gradient in $L^2$. (English)
Keyword: incompressible fluid
Keyword: rotating rigid body
Keyword: strong solution
MSC: 35Q35
MSC: 76D05
idZBL: Zbl 06486937
idMR: MR3368497
DOI: 10.21136/MB.2015.144329
.
Date available: 2015-06-30T12:23:55Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144329
.
Reference: [1] Borchers, W.: Zur Stabilität und Faktorisienrungsmethode für die Navier-Stokes Gleichungen inkompressibler viskoser Flüssigkeiten.Habilitationsschrift University of Paderborn (1992), German.
Reference: [2] Chen, Z.-M., Miyakawa, T.: Decay properties of weak solutions to a perturbed Navier-Stokes system in {$\mathbb R^n$}.Adv. Math. Sci. Appl. 7 (1997), 741-770. MR 1476275
Reference: [3] Cumsille, P., Takahashi, T.: Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid.Czech. Math. J. 58 (2008), 961-992. Zbl 1174.35092, MR 2471160, 10.1007/s10587-008-0063-2
Reference: [4] Cumsille, P., Tucsnak, M.: Wellposedness for the Navier-Stokes flow in the exterior of a rotating obstacle.Math. Methods Appl. Sci. 29 (2006), 595-623. MR 2205973, 10.1002/mma.702
Reference: [5] Dintelmann, E., Geissert, M., Hieber, M.: Strong $L^p$-solutions to the Navier-Stokes flow past moving obstacles: The case of several obstacles and time dependent velocity.Trans. Am. Math. Soc. 361 (2009), 653-669. Zbl 1156.76016, MR 2452819, 10.1090/S0002-9947-08-04684-9
Reference: [6] Galdi, G. P.: On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications.Handbook of Mathematical Fluid Dynamics 1 Elsevier Amsterdam (2002), 653-791 S. Friedlander et al. Zbl 1230.76016, MR 1942470
Reference: [7] Galdi, G. P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations I. Linearized Steady Problems.Springer Tracts in Natural Philosophy 38 Springer, New York (1994). MR 1284205
Reference: [8] Galdi, G. P., Silvestre, A. L.: Strong solutions to the Navier-Stokes equations around a rotating obstacle.Arch. Ration. Mech. Anal. 176 (2005), 331-350. Zbl 1081.35076, MR 2185661, 10.1007/s00205-004-0348-z
Reference: [9] Galdi, G. P., Silvestre, A. L.: Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques.Nonlinear Problems in Mathematical Physics and Related Topics I. Int. Math. Ser. (N. Y.) 1 Kluwer Academic/Plenum Publishers, New York (2002), 121-144 M. S. Birman et al. Zbl 1046.35084, MR 1970608, 10.1007/978-1-4615-0777-2_8
Reference: [10] Geissert, M., Heck, H., Hieber, M.: $L^p$-theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle.J. Reine Angew. Math. 596 (2006), 45-62. Zbl 1102.76015, MR 2254804
Reference: [11] Hishida, T.: An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle.Arch. Ration. Mech. Anal. 150 (1999), 307-348. Zbl 0949.35106, MR 1741259, 10.1007/s002050050190
Reference: [12] Hishida, T., Shibata, Y.: $L_p$-$L_q$ estimate of the Stokes operator and Navier-Stokes flows in the exterior of a rotating obstacle.Arch. Ration. Mech. Anal. 193 (2009), 339-421. Zbl 1169.76015, MR 2525121, 10.1007/s00205-008-0130-8
Reference: [13] Inoue, A., Wakimoto, M.: On existence of solutions of the Navier-Stokes equation in a time dependent domain.J. Fac. Sci., Univ. Tokyo, Sect. I A 24 (1977), 303-319. Zbl 0381.35066, MR 0481649
Reference: [14] Ladyzhenskaya, O. A.: An initial-boundary value problem for the Navier-Stokes equations in domains with boundary changing in time.Semin. Math., V. A. Steklov Math. Inst., Leningrad 11 (1968), 35-46 translation from Zap. Nauchn. Semin. Leningrad. Otdel. Mat. Inst. Steklov. 11 (1968), 97-128 Russian. MR 0416222
Reference: [15] Neustupa, J.: Existence of a weak solution to the Navier-Stokes equation in a general time-varying domain by the Rothe method.Math. Methods Appl. Sci. 32 (2009), 653-683. Zbl 1160.35494, MR 2504002, 10.1002/mma.1059
Reference: [16] Neustupa, J., Penel, P.: A weak solvability of the Navier-Stokes equation with Navier's boundary condition around a ball striking the wall.Advances in Mathematical Fluid Mechanics Springer, Berlin (2010), 385-407 R. Rannacher et al. MR 2665044
Reference: [17] Neustupa, J., Penel, P.: A weak solution to the Navier-Stokes system with Navier's boundary condition in a time varying domain.Accepted to ``Recent Developments of Mathematical Fluid Mechanics'', Series: Advances in Math. Fluid Mech. Birkhäuser G. P. Galdi, J. G. Heywood, R. Rannacher.
Reference: [18] Serre, D.: Free fall of a rigid body in an incompressible viscous fluid. Existence.Japan J. Appl. Math. 4 French (1987), 99-110. MR 0899206
Reference: [19] Takahashi, T.: Existence of strong solutions for the problem of a rigid-fluid system.C. R., Math., Acad. Sci. Paris 336 (2003), 453-458. Zbl 1044.35062, MR 1979363, 10.1016/S1631-073X(03)00081-5
Reference: [20] Takahashi, T., Tucsnak, M.: Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid.J. Math. Fluid Mech. 6 (2004), 53-77. Zbl 1054.35061, MR 2027754, 10.1007/s00021-003-0083-4
.

Files

Files Size Format View
MathBohem_140-2015-2_11.pdf 319.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo