Title:
|
Existence Results for a Fractional Boundary Value Problem via Critical Point Theory (English) |
Author:
|
Boucenna, A. |
Author:
|
Moussaoui, T. |
Language:
|
English |
Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
ISSN:
|
0231-9721 |
Volume:
|
54 |
Issue:
|
1 |
Year:
|
2015 |
Pages:
|
47-64 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we consider the following boundary value problem \[ \left\lbrace \begin{array}{lll} D_{T^{-}}^{\alpha } (D_{0^{+}}^{\alpha } (D_{T^{-}}^{\alpha }(D_{0^{+}}^{\alpha } u(t))) ) = f(t, u(t)), \quad t \in [0, T], \\ u(0)= u(T)= 0\\ D_{T^{-}}^{\alpha }(D_{0^{+}}^{\alpha }u(0))= D_{T^{-}}^{\alpha }(D_{0^{+}}^{\alpha }u(T))= 0, \end{array} \right. \] where $0 < \alpha \le 1$ and $f\colon [0, T]\times \mathbb {R} \rightarrow \mathbb {R} $ is a continuous function, $D_{0^{+}}^{\alpha }$, $D_{T^{-}}^{\alpha }$ are respectively the left and right fractional Riemann–Liouville derivatives and we prove the existence of at least one solution for this problem. (English) |
Keyword:
|
Existence results |
Keyword:
|
fractional differential equation |
Keyword:
|
boundary value problem |
Keyword:
|
critical point theory |
Keyword:
|
minimization principle |
Keyword:
|
Mountain pass theorem |
Keyword:
|
Third order |
Keyword:
|
nonlinear differential equation |
Keyword:
|
uniform stability |
Keyword:
|
uniform ultimate boundedness |
Keyword:
|
periodic solutions |
MSC:
|
26A33 |
MSC:
|
34B15 |
MSC:
|
58E05 |
idZBL:
|
Zbl 1354.34013 |
idMR:
|
MR3468600 |
. |
Date available:
|
2015-09-01T08:58:50Z |
Last updated:
|
2018-01-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144367 |
. |
Reference:
|
[1] Jiao, F., Zhou, Y.: Existence results for fractional boundary value problem via critical point theory. International Journal of Bifurcation and Chaos 22, 1250086 (2012), 1–17. Zbl 1258.34015, MR 2926062, 10.1142/S0218127412500861 |
Reference:
|
[2] Jiao, F., Zhou, Y.: Existence of solutions for a class of fractional boundary value problems via critical point theory. Computers and Mathematics with Applications 62 (2011), 1181–1199. Zbl 1235.34017, MR 2824707, 10.1016/j.camwa.2011.03.086 |
Reference:
|
[3] Bai, C.: Infinitely many solutions for a perturbed nonlinear fractional boundary-value problem. Electonic Journal of Differential Equations 136 (2013), 1–12. Zbl 1295.34007, MR 3084616 |
Reference:
|
[4] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. Elsevier Science, Amsterdam, 2006. Zbl 1092.45003, MR 2218073 |
Reference:
|
[5] Badiale, M., Serra, E.: Semilinear Elliptic Equations for Beginners. Springer-Verlag, New York, 2011. Zbl 1214.35025, MR 2722059 |
Reference:
|
[6] Friedman, A.: Foundations of Modern Analysis. Dover Publications, New York, 1982. Zbl 0557.46001, MR 0663003 |
Reference:
|
[7] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integral and Derivatives: Theory and Applications. Gordon and Breach, Newark, NJ, 1993. MR 1347689 |
Reference:
|
[8] Diethlem, K.: The Analysis of Fractional Differential Equations. Springer, New York, 2010. MR 2680847 |
Reference:
|
[9] Rabinowitz, P. H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conference Series in Mathematics 65, American Mathematical Society, Providence, RI, 1986. Zbl 0609.58002, MR 0845785 |
Reference:
|
[10] Mawhin, J., Willem, M.: Critical point theory and hamiltonian systems. Springer, New York, 1989. Zbl 0676.58017, MR 0982267 |
Reference:
|
[11] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, 1999. Zbl 0924.34008, MR 1658022 |
Reference:
|
[12] Brezis, H.: Analyse fonctionnelle, théorie et applications. Massons, Paris, 1983. Zbl 0511.46001, MR 0697382 |
. |