Previous |  Up |  Next

Article

Title: Some Results on the Properties of Differential Polynomials Generated by Solutionsof Complex Differential Equations (English)
Author: LATREUCH, Zinelâabidine
Author: BELAÏDI, Benharrat
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 54
Issue: 1
Year: 2015
Pages: 81-94
Summary lang: English
.
Category: math
.
Summary: This paper is devoted to considering the complex oscillation of differential polynomials generated by meromorphic solutions of the differential equation \[ f^{(k)}+A_{k-1}(z) f^{(k-1)}+\cdots +A_1(z) f^{\prime }+A_0(z) f=0, \] where $A_{i}(z)$ $(i=0,1,\cdots ,k-1)$ are meromorphic functions of finite order in the complex plane. (English)
Keyword: Linear differential equations
Keyword: finite order
Keyword: hyper-order
Keyword: exponent of convergence of the sequence of distinct zeros
Keyword: hyper-exponent of convergence of the sequence of distinct zeros
MSC: 30D35
MSC: 34M10
idZBL: Zbl 1345.30032
idMR: MR3468602
.
Date available: 2015-09-01T09:01:05Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/144369
.
Reference: [1] Belaïdi, B.: Growth and oscillation theory of solutions of some linear differential equations. Mat. Vesnik 60, 4 (2008), 233–246. Zbl 1274.30112, MR 2465805
Reference: [2] Cao, T. B., Chen, Z. X., Zheng, X. M., Tu, J.: On the iterated order of meromorphic solutions of higher order linear differential equations. Ann. Differential Equations 21, 2 (2005), 111–122. MR 2153797
Reference: [3] Cao, T. B., Xu, J. F., Chen, Z. X.: On the meromorphic solutions of linear differential equations on the complex plane. J. Math. Anal. Appl. 364, 1 (2010), 130–142. Zbl 1194.34161, MR 2576057, 10.1016/j.jmaa.2009.11.018
Reference: [4] Chen, Z. X.: Zeros of meromorphic solutions of higher order linear differential equations. Analysis 14, 4 (1994), 425–438. Zbl 0815.34003, MR 1310623
Reference: [5] Chen, Z. X.: The fixed points and hyper-order of solutions of second order complex differential equations. Acta Math. Sci. Ser. A, Chin. Ed. 20, 3 (2000), 425–432, (in Chinese). Zbl 0980.30022, MR 1792926
Reference: [6] Chen, Z. X., Shon, K. H.: On the growth and fixed points of solutions of second order differential equations with meromorphic coefficients. Acta Math. Sin. (Engl. Ser.) 21, 4 (2005), 753–764. Zbl 1100.34067, MR 2156950, 10.1007/s10114-004-0434-z
Reference: [7] Hayman, W. K.: Meromorphic Functions. Clarendon Press, Oxford, 1964. Zbl 0115.06203, MR 0164038
Reference: [8] Laine, I.: Nevanlinna Theory and Complex Differential Equations. de Gruyter Studies in Mathematics, 15, Walter de Gruyter & Co., Berlin, New York, 1993. MR 1207139
Reference: [9] Laine, I., Rieppo, J.: Differential polynomials generated by linear differential equations. Complex Var. Theory Appl. 49, 12 (2004), 897–911. Zbl 1080.34076, MR 2101213, 10.1080/02781070410001701092
Reference: [10] Latreuch, Z., Belaïdi, B.: Growth and oscillation of differential polynomials generated by complex differential equations. Electron. J. Differential Equations 2013, 16 (2013), 1–14. Zbl 1290.34088, MR 3020232
Reference: [11] Latreuch, Z., Belaïdi, B.: Estimations about the order of growth and the type of meromorphic functions in the complex plane. An. Univ. Oradea, Fasc. Matematica 20, 1 (2013), 179–186. Zbl 1299.30001, MR 3328914
Reference: [12] Levin, B. Ya.: Lectures on Entire Functions. Translations of Mathematical Monographs, 150, American Mathematical Society, Providence, RI, 1996, In collaboration with and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko. Translated from the Russian manuscript by Tkachenko. Zbl 0856.30001, MR 1400006
Reference: [13] Liu, M. S., Zhang, X. M.: Fixed points of meromorphic solutions of higher order linear differential equations. Ann. Acad. Sci. Fenn. Math. 31, 1 (2006), 191–211. Zbl 1094.30036, MR 2210116
Reference: [14] Tu, J., Yi, C. F.: On the growth of solutions of a class of higher order linear differential equations with coefficients having the same order. J. Math. Anal. Appl. 340, 1 (2008), 487–497. Zbl 1141.34054, MR 2376170, 10.1016/j.jmaa.2007.08.041
Reference: [15] Wang, J., Yi, H. X., Cai, H.: Fixed points of the $l$-th power of differential polynomials generated by solutions of differential equations. J. Syst. Sci. Complex. 17, 2 (2004), 271–280. Zbl 1090.34071, MR 2053378
Reference: [16] Yang, C. C., Yi, H. X.: Uniqueness Theory of Meromorphic Functions. Mathematics and its Applications, 557, Kluwer Academic Publishers, Dordrecht, 2003. Zbl 1070.30011, MR 2105668
.

Files

Files Size Format View
ActaOlom_54-2015-1_6.pdf 331.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo