Previous |  Up |  Next

Article

Title: Derivations and Translations on Trellises (English)
Author: Rai, Shashirekha B.
Author: Parameshwara Bhatta, S.
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 54
Issue: 1
Year: 2015
Pages: 129-136
Summary lang: English
.
Category: math
.
Summary: G. Szász, J. Szendrei, K. Iseki and J. Nieminen have made an extensive study of derivations and translations on lattices. In this paper, the concepts of meet-translations and derivations have been studied in trellises (also called weakly associative lattices or WA-lattices) and several results in lattices are extended to trellises. The main theorem of this paper, namely, that every derivatrion of a trellis is a meet-translation, is proved without using associativity and it generalizes a well-known result of G. Szász. (English)
Keyword: Psoset
Keyword: trellis
Keyword: ideal
Keyword: meet-translation
Keyword: derivation
MSC: 06B05
idZBL: Zbl 1350.06004
idMR: MR3468606
.
Date available: 2015-09-01T09:05:55Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/144373
.
Reference: [1] Fried, E.: Tournaments and nonassociative lattices. Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 13 (1970), 151–164. MR 0321837
Reference: [2] Grätzer, G.: General Lattice Theory. Birkhauser Verlag, Basel, 1978. MR 0504338
Reference: [3] Harary, F.: Graph Theory. Addison-Wesley Series in Mathematics, Addison-Wesley, Reading, 1971. MR 0256911
Reference: [4] Iseki, K.: On endomorphism with fixed elements on algebra. Proc. Japan Acad. 40, 1964, 403. MR 0170839
Reference: [5] Nieminen, J.: Derivations and translations on lattices. Acta Sci. Math. 38 (1976), 359–363. Zbl 0344.06004, MR 0429687
Reference: [6] Nieminen, J.: The lattice of translations on a lattice. Acta Sci. Math. 39 (1977), 109–113. Zbl 0364.06005, MR 0441798
Reference: [7] Parameshwara Bhatta, S., Shashirekha, H.: A characterization of completeness for trellises. Algebra Universalis 44 (2000), 305–308. Zbl 1013.06003, MR 1816026, 10.1007/s000120050189
Reference: [8] Skala, H. L.: Trellis theory. Algebra Universalis 1 (1971), 218–233. Zbl 0242.06003, MR 0302523, 10.1007/BF02944982
Reference: [9] Skala, H. L.: Trellis Theory. Amer. Math. Soc., Providence, R.I., 1972. Zbl 0242.06004, MR 0325474
Reference: [10] Szász, G.: Derivations of lattices. Acta Sci. Math. 36 (1975), 149–154. Zbl 0284.06001, MR 0382090
Reference: [11] Szász, G., Szendrei, J.: Über die Translationen der Halbverbände. Acta. Sci. Math. 18 (1957), 44–47. Zbl 0078.02002, MR 0087667
.

Files

Files Size Format View
ActaOlom_54-2015-1_10.pdf 341.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo