Previous |  Up |  Next

Article

Title: A priori error estimates for Lagrange interpolation on triangles (English)
Author: Kobayashi, Kenta
Author: Tsuchiya, Takuya
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 60
Issue: 5
Year: 2015
Pages: 485-499
Summary lang: English
.
Category: math
.
Summary: We present the error analysis of Lagrange interpolation on triangles. A new a priori error estimate is derived in which the bound is expressed in terms of the diameter and circumradius of a triangle. No geometric conditions on triangles are imposed in order to get this type of error estimates. To derive the new error estimate, we make use of the two key observations. The first is that squeezing a right isosceles triangle perpendicularly does not reduce the approximation property of Lagrange interpolation. An arbitrary triangle is obtained from a squeezed right triangle by a linear transformation. The second key observation is that the ratio of the singular values of the linear transformation is bounded by the circumradius of the target triangle. (English)
Keyword: finite element method
Keyword: Lagrange interpolation
Keyword: circumradius condition
Keyword: minimum angle condition
Keyword: maximum angle condition
MSC: 65D05
MSC: 65N30
idZBL: Zbl 06486922
idMR: MR3396477
DOI: 10.1007/s10492-015-0108-4
.
Date available: 2015-09-03T10:35:58Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144388
.
Reference: [1] Adams, R. A., Fournier, J. J. F.: Sobolev Spaces.Pure and Applied Mathematics 140 Academic Press, New York (2003). Zbl 1098.46001, MR 2424078
Reference: [2] Babuška, I., Aziz, A. K.: On the angle condition in the finite element method.SIAM J. Numer. Anal. 13 (1976), 214-226. Zbl 0324.65046, MR 0455462, 10.1137/0713021
Reference: [3] Brandts, J., Korotov, S., Kříek, M.: On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions.Comput. Math. Appl. 55 (2008), 2227-2233. MR 2413688, 10.1016/j.camwa.2007.11.010
Reference: [4] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods.Texts in Applied Mathematics 15 Springer, New York (2008). Zbl 1135.65042, MR 2373954, 10.1007/978-0-387-75934-0_7
Reference: [5] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations.Universitext Springer, New York (2011). Zbl 1220.46002, MR 2759829
Reference: [6] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Classics in Applied Mathematics 40 SIAM, Philadelphia (2002), Repr., unabridged republ. of the orig. 1978. MR 1930132
Reference: [7] Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements.Applied Mathematical Sciences 159 Springer, New York (2004). Zbl 1059.65103, MR 2050138, 10.1007/978-1-4757-4355-5
Reference: [8] Hannukainen, A., Korotov, S., Kříek, M.: The maximum angle condition is not necessary for convergence of the finite element method.Numer. Math. 120 (2012), 79-88. MR 2885598, 10.1007/s00211-011-0403-2
Reference: [9] Horn, R. A., Johnson, C. R.: Topics in Matrix Analysis.Cambridge University Press, Cambridge (1991). Zbl 0729.15001, MR 1091716
Reference: [10] Jamet, P.: Estimations d'erreur pour des éléments finis droits presque dégénérés.Rev. Franc. Automat. Inform. Rech. Operat., R 10 French (1976), 43-60. MR 0455282
Reference: [11] Kobayashi, K., Tsuchiya, T.: A Babuška-Aziz type proof of the circumradius condition.Japan J. Ind. Appl. Math. 31 (2014), 193-210. Zbl 1295.65011, MR 3167084, 10.1007/s13160-013-0128-y
Reference: [12] Kobayashi, K., Tsuchiya, T.: On the circumradius condition for piecewise linear triangular elements.Japan J. Ind. Appl. Math. 32 (2015), 65-76. MR 3318902, 10.1007/s13160-014-0161-5
Reference: [13] Kobayashi, K., Tsuchiya, T.: An extension of Babuška-Aziz's theorem to higher order Lagrange interpolation.ArXiv:1508.00119 (2015).
Reference: [14] Kříek, M.: On semiregular families of triangulations and linear interpolation.Appl. Math., Praha 36 (1991), 223-232. MR 1109126
Reference: [15] Liu, X., Kikuchi, F.: Analysis and estimation of error constants for $P_0$ and $P_1$ interpolations over triangular finite elements.J. Math. Sci., Tokyo 17 (2010), 27-78. Zbl 1248.65118, MR 2676659
Reference: [16] Shenk, N. A.: Uniform error estimates for certain narrow Lagrange finite elements.Math. Comput. 63 (1994), 105-119. Zbl 0807.65003, MR 1226816, 10.1090/S0025-5718-1994-1226816-5
Reference: [17] Yamamoto, T.: Elements of Matrix Analysis.Japanese Saiensu-sha (2010).
Reference: [18] Ženíšek, A.: The convergence of the finite element method for boundary value problems of the system of elliptic equations.Apl. Mat. 14 Czech (1969), 355-376. Zbl 0188.22604, MR 0245978
Reference: [19] Zlámal, M.: On the finite element method.Numer. Math. 12 (1968), 394-409. MR 0243753, 10.1007/BF02161362
.

Files

Files Size Format View
AplMat_60-2015-5_3.pdf 304.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo