Previous |  Up |  Next

Article

Title: On the stability of the ALE space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains (English)
Author: Balázsová, Monika
Author: Feistauer, Miloslav
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 60
Issue: 5
Year: 2015
Pages: 501-526
Summary lang: English
.
Category: math
.
Summary: The paper is concerned with the analysis of the space-time discontinuous Galerkin method (STDGM) applied to the numerical solution of the nonstationary nonlinear convection-diffusion initial-boundary value problem in a time-dependent domain formulated with the aid of the arbitrary Lagrangian-Eulerian (ALE) method. In the formulation of the numerical scheme we use the nonsymmetric, symmetric and incomplete versions of the space discretization of diffusion terms and interior and boundary penalty. The nonlinear convection terms are discretized with the aid of a numerical flux. The space discretization uses piecewise polynomial approximations of degree not greater than $p$ with an integer $p\geq 1$. In the theoretical analysis, the piecewise linear time discretization is used. The main attention is paid to the investigation of unconditional stability of the method. (English)
Keyword: nonstationary nonlinear convection-diffusion equations
Keyword: time-dependent domain
Keyword: ALE method
Keyword: space-time discontinuous Galerkin method
Keyword: unconditional stability
MSC: 65M60
MSC: 65M99
idZBL: Zbl 06486923
idMR: MR3396478
DOI: 10.1007/s10492-015-0109-3
.
Date available: 2015-09-03T10:39:35Z
Last updated: 2023-07-17
Stable URL: http://hdl.handle.net/10338.dmlcz/144389
.
Reference: [1] Akrivis, G., Makridakis, C.: Galerkin time-stepping methods for nonlinear parabolic equations.M2AN, Math. Model. Numer. Anal. 38 (2004), 261-289. Zbl 1085.65094, MR 2069147, 10.1051/m2an:2004013
Reference: [2] Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D.: Unified analysis of discontinuous Galerkin methods for elliptic problems.SIAM J. Numer. Anal. 39 (2002), 1749-1779. Zbl 1008.65080, MR 1885715, 10.1137/S0036142901384162
Reference: [3] Babuška, I., Baumann, C. E., Oden, J. T.: A discontinuous {$hp$} finite element method for diffusion problems: 1-D analysis.Comput. Math. Appl. 37 (1999), 103-122. Zbl 0940.65076, MR 1688050, 10.1016/S0898-1221(99)00117-0
Reference: [4] Balázsová, M., Feistauer, M., Hadrava, M., Kosík, A.: On the stability of the space-time discontinuous Galerkin method for the numerical solution of nonstationary nonlinear convection-diffusion problems.(to appear) in J. Numer. Math.
Reference: [5] Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations.J. Comput. Phys. 131 (1997), 267-279. Zbl 0871.76040, MR 1433934, 10.1006/jcph.1996.5572
Reference: [6] Baumann, C. E., Oden, J. T.: A discontinuous {$hp$} finite element method for the Euler and Navier-Stokes equations.Int. J. Numer. Methods Fluids 31 (1999), 79-95. Zbl 0985.76048, MR 1714511, 10.1002/(SICI)1097-0363(19990915)31:1<79::AID-FLD956>3.0.CO;2-C
Reference: [7] Boffi, D., Gastaldi, L., Heltai, L.: Numerical stability of the finite element immersed boundary method.Math. Models Methods Appl. Sci. 17 (2007), 1479-1505. Zbl 1186.76661, MR 2359913, 10.1142/S0218202507002352
Reference: [8] Bonito, A., Kyza, I., Nochetto, R. H.: Time-discrete higher-order ALE formulations: stability.SIAM J. Numer. Anal. 51 (2013), 577-604. Zbl 1267.65114, MR 3033024, 10.1137/120862715
Reference: [9] Brezzi, F., Manzini, G., Marini, D., Pietra, P., Russo, A.: Discontinuous Galerkin approximations for elliptic problems.Numer. Methods Partial Differ. Equations 16 (2000), 365-378. Zbl 0957.65099, MR 1765651, 10.1002/1098-2426(200007)16:4<365::AID-NUM2>3.0.CO;2-Y
Reference: [10] Česenek, J., Feistauer, M.: Theory of the space-time discontinuous Galerkin method for nonstationary parabolic problems with nonlinear convection and diffusion.SIAM J. Numer. Anal. 50 (2012), 1181-1206. Zbl 1312.65157, MR 2970739, 10.1137/110828903
Reference: [11] Česenek, J., Feistauer, M., Horáček, J., Kučera, V., Prokopová, J.: Simulation of compressible viscous flow in time-dependent domains.Appl. Math. Comput. 219 (2013), 7139-7150. MR 3030556, 10.1016/j.amc.2011.08.077
Reference: [12] Česenek, J., Feistauer, M., Kosík, A.: DGFEM for the analysis of airfoil vibrations induced by compressible flow.ZAMM, Z. Angew. Math. Mech. 93 (2013), 387-402. Zbl 1277.74026, MR 3069914, 10.1002/zamm.201100184
Reference: [13] Chrysafinos, K., Walkington, N. J.: Error estimates for the discontinuous Galerkin methods for parabolic equations.SIAM J. Numer. Anal. 44 (2006), 349-366. Zbl 1112.65086, MR 2217386, 10.1137/030602289
Reference: [14] Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems.J. Sci. Comput. 16 (2001), 173-261. Zbl 1065.76135, MR 1873283, 10.1023/A:1012873910884
Reference: [15] Dolejší, V.: On the discontinuous Galerkin method for the numerical solution of the Navier-Stokes equations.Int. J. Numer. Methods Fluids 45 (2004), 1083-1106. Zbl 1060.76570, MR 2072224, 10.1002/fld.730
Reference: [16] Dolejší, V., Feistauer, M.: Discontinuous Galerkin Method---Analysis and Applications to Compressible Flow.Springer, Heidelberg (2015). MR 3363720
Reference: [17] Dolejší, V., Feistauer, M., Hozman, J.: Analysis of semi-implicit DGFEM for nonlinear convection-diffusion problems on nonconforming meshes.Comput. Methods Appl. Mech. Eng. 196 (2007), 2813-2827. Zbl 1121.76033, MR 2325393, 10.1016/j.cma.2006.09.025
Reference: [18] Donea, J., Giuliani, S., Halleux, J. P.: An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions.Comput. Methods Appl. Mech. Eng. 33 (1982), 689-723. Zbl 0508.73063, 10.1016/0045-7825(82)90128-1
Reference: [19] Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Computational differential equations.Cambridge Univ. Press, Cambridge (1996). Zbl 0946.65049, MR 1414897
Reference: [20] Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems. I. A linear model problem.SIAM J. Numer. Anal. 28 (1991), 43-77. Zbl 0732.65093, MR 1083324, 10.1137/0728003
Reference: [21] Estep, D., Larsson, S.: The discontinuous Galerkin method for semilinear parabolic problems.RAIRO, Modélisation Math. Anal. Numér. 27 (1993), 35-54. Zbl 0768.65065, MR 1204627, 10.1051/m2an/1993270100351
Reference: [22] Feistauer, M., Felcman, J., Straškraba, I.: Mathematical and Computational Methods for Compressible Flow.Numerical Mathematics and Scientific Computation Oxford University Press, Oxford (2003). Zbl 1028.76001, MR 2261900
Reference: [23] Feistauer, M., Hájek, J., Švadlenka, K.: Space-time discontinuous Galerkin method for solving nonstationary convection-diffusion-reaction problems.Appl. Math., Praha 52 (2007), 197-233. Zbl 1164.65469, MR 2316153, 10.1007/s10492-007-0011-8
Reference: [24] Feistauer, M., Hasnedlová-Prokopová, J., Horáček, J., Kosík, A., Kučera, V.: DGFEM for dynamical systems describing interaction of compressible fluid and structures.J. Comput. Appl. Math. 254 (2013), 17-30. Zbl 1290.65089, MR 3061063, 10.1016/j.cam.2013.03.028
Reference: [25] Feistauer, M., Horáček, J., Kučera, V., Prokopová, J.: On numerical solution of compressible flow in time-dependent domains.Math. Bohem. 137 (2012), 1-16. Zbl 1249.65196, MR 2978442, 10.21136/MB.2012.142782
Reference: [26] Feistauer, M., Kučera, V., Najzar, K., Prokopová, J.: Analysis of space-time discontinuous Galerkin method for nonlinear convection-diffusion problems.Numer. Math. 117 (2011), 251-288. Zbl 1211.65125, MR 2754851, 10.1007/s00211-010-0348-x
Reference: [27] Feistauer, M., Kučera, V., Prokopová, J.: Discontinuous Galerkin solution of compressible flow in time-dependent domains.Math. Comput. Simul. 80 (2010), 1612-1623. MR 2647255, 10.1016/j.matcom.2009.01.020
Reference: [28] Formaggia, L., Nobile, F.: A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements.East-West J. Numer. Math. 7 (1999), 105-131. Zbl 0942.65113, MR 1699243
Reference: [29] Gastaldi, L.: A priori error estimates for the arbitrary Lagrangian Eulerian formulation with finite elements.East-West J. Numer. Math. 9 (2001), 123-156. Zbl 0988.65082, MR 1836870
Reference: [30] Hasnedlová, J., Feistauer, M., Horáček, J., Kosík, A., Kučera, V.: Numerical simulation of fluid-structure interaction of compressible flow and elastic structure.Computing 95 (2013), S343--S361. MR 3054377, 10.1007/s00607-012-0240-x
Reference: [31] Havle, O., Dolejší, V., Feistauer, M.: Discontinuous Galerkin method for nonlinear convection-diffusion problems with mixed Dirichlet-Neumann boundary conditions.Appl. Math., Praha 55 (2010), 353-372. Zbl 1224.65219, MR 2737717, 10.1007/s10492-010-0012-x
Reference: [32] Houston, P., Schwab, C., Süli, E.: Discontinuous $hp$-finite element methods for advection-diffusion-reaction problems.SIAM J. Numer. Anal. 39 (2002), 2133-2163. Zbl 1015.65067, MR 1897953, 10.1137/S0036142900374111
Reference: [33] Khadra, K., Angot, P., Parneix, S., Caltagirone, J.-P.: Fictiuous domain approach for numerical modelling of Navier-Stokes equations.Int. J. Numer. Methods Fluids 34 (2000), 651-684. Zbl 1032.76041, 10.1002/1097-0363(20001230)34:8<651::AID-FLD61>3.0.CO;2-D
Reference: [34] Oden, J. T., Babuška, I., Baumann, C. E.: A discontinuous $hp$ finite element method for diffusion problems.J. Comput. Phys. 146 (1998), 491-519. Zbl 0926.65109, MR 1654911, 10.1006/jcph.1998.6032
Reference: [35] Schötzau, D.: hp-DGFEM for Parabolic Evolution Problems. Applications to Diffusion and Viscous Incompressible Fluid Flow.PhD Thesis, ETH No. 13041, Zürich (1999). MR 2715264
Reference: [36] Schötzau, D., Schwab, C.: An $hp$ a priori error analysis of the DG time-stepping method for initial value problems.Calcolo 37 (2000), 207-232. MR 1812787, 10.1007/s100920070002
Reference: [37] Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems.Springer Series in Computational Mathematics 25 Springer, Berlin (2006). Zbl 1105.65102, MR 2249024
.

Files

Files Size Format View
AplMat_60-2015-5_4.pdf 281.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo