Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
suspension bridge; Hamilton principle; vertical oscillation; torsional oscillation; existence; uniqueness; continuous dependence on data
Summary:
In this paper a dynamic linear model of suspension bridge center spans is formulated and three different ways of fixing the main cables are studied. The model describes vertical and torsional oscillations of the deck under the action of lateral wind. The mutual interactions of main cables, center span, and hangers are analyzed. Three variational evolutions are analyzed. The variational equations correspond to the way how the main cables are fixed. The existence, uniqueness, and continuous dependence on data are proved.
References:
[1] Ahmed, N. U., Harbi, H.: Mathematical analysis of dynamic models of suspension bridges. SIAM J. Appl. Math. 58 (1998), 853-874. DOI 10.1137/S0036139996308698 | MR 1616611 | Zbl 0912.93048
[2] An, Y.: Nonlinear perturbations of a coupled system of steady state suspension bridge equations. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 51 (2002), 1285-1292. DOI 10.1016/S0362-546X(01)00899-9 | MR 1926630 | Zbl 1165.74323
[3] An, Y., Zhong, C.: Periodic solutions of a nonlinear suspension bridge equation with damping and nonconstant load. J. Math. Anal. Appl. 279 (2003), 569-579. DOI 10.1016/S0022-247X(03)00035-0 | MR 1974046 | Zbl 1029.35022
[4] Berkovits, J., Drábek, P., Leinfelder, H., Mustonen, V., Tajčová, G.: Time-periodic oscillations in suspension bridges: existence of unique solutions. Nonlinear Anal., Real World Appl. 1 (2000), 345-362. MR 1791531 | Zbl 0989.74031
[5] Choi, Y. S., Jen, K. C., McKenna, P. J.: The structure of the solution set for periodic oscillations in a suspension bridge model. IMA J. Appl. Math. 47 (1991), 283-306. DOI 10.1093/imamat/47.3.283 | MR 1141492 | Zbl 0756.73041
[6] Ding, Z.: Multiple periodic oscillations in a nonlinear suspension bridge system. J. Math. Anal. Appl. 269 (2002), 726-746. DOI 10.1016/S0022-247X(02)00051-3 | MR 1907140 | Zbl 1003.35089
[7] Ding, Z.: Nonlinear periodic oscillations in a suspension bridge system under periodic external aerodynamic forces. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 49 (2002), 1079-1097. DOI 10.1016/S0362-546X(01)00726-X | MR 1942667 | Zbl 1029.35023
[8] Drábek, P., Leinfelder, H., Tajčová, G.: Coupled string-beam equations as a model of suspension bridges. Appl. Math., Praha 44 (1999), 97-142. DOI 10.1023/A:1022257304738 | MR 1667633 | Zbl 1059.74522
[9] Edwards, R. E.: Functional Analysis. Theory and Applications. Holt Rinehart and Winston New York (1965). MR 0221256 | Zbl 0182.16101
[10] Fonda, A., Schneider, Z., Zanolin, F.: Periodic oscillations for a nonlinear suspension bridge model. J. Comput. Appl. Math. 52 (1994), 113-140. DOI 10.1016/0377-0427(94)90352-2 | MR 1310126 | Zbl 0810.73030
[11] Gajewski, H., Gröger, K., Zacharias, K.: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. German Mathematische Lehrbücher und Monographien. II. Abteilung. Band 38 Akademie-Verlag, Berlin (1974). MR 0636412
[12] Glover, J., Lazer, A. C., McKenna, P. J.: Existence and stability of large scale nonlinear oscillations in suspension bridges. Z. Angew. Math. Phys. 40 (1989), 172-200. DOI 10.1007/BF00944997 | MR 0990626 | Zbl 0677.73046
[13] Holubová, G., Matas, A.: Initial-boundary value problem for the nonlinear string-beam system. J. Math. Anal. Appl. 288 (2003), 784-802. DOI 10.1016/j.jmaa.2003.09.028 | MR 2020197 | Zbl 1037.35087
[14] Lazer, A. C., McKenna, P. J.: Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis. SIAM Rev. 32 (1990), 537-578. DOI 10.1137/1032120 | MR 1084570 | Zbl 0725.73057
[15] Malík, J.: Generalized nonlinear models of suspension bridges. J. Math. Anal. Appl. 324 (2006), 1288-1296. DOI 10.1016/j.jmaa.2006.01.003 | MR 2266559 | Zbl 1139.74026
[16] Malík, J.: Nonlinear models of suspension bridges. J. Math. Anal. Appl. 321 (2006), 828-850. DOI 10.1016/j.jmaa.2005.08.080 | MR 2241158 | Zbl 1139.74026
[17] Malík, J.: Sudden lateral asymmetry and torsional oscillations in the original Tacoma suspension bridge. J. Sound Vib. 332 (2013), 3772-3789. DOI 10.1016/j.jsv.2013.02.011
[18] McKenna, P. J.: Large torsional oscillations in suspension bridges revisited: fixing an old approximation. Am. Math. Mon. 106 (1999), 1-18. DOI 10.2307/2589581 | MR 1674145 | Zbl 1076.70509
[19] McKenna, P. J., Walter, W.: Nonlinear oscillations in a suspension bridge. Arch. Ration. Mech. Anal. 98 (1987), 167-177. DOI 10.1007/BF00251232 | MR 0866720 | Zbl 0676.35003
[20] Plaut, R. H.: Snap loads and torsional oscillations of the original Tacoma Narrows Bridge. J. Sound Vib. 309 (2008), 613-636. DOI 10.1016/j.jsv.2007.07.057
[21] Plaut, R. H., Davis, F. M.: Sudden lateral asymmetry and torsional oscillations of section models of suspension bridges. J. Sound Vib. 307 (2007), 894-905. DOI 10.1016/j.jsv.2007.07.036
[22] Pugsley, A.: The Theory of Suspension Bridges. Edward Arnold, London (1968).
[23] Scanlan, R. H.: The action of flexible bridges under wind, I: Flutter theory. J. Sound Vib. 60 (1978), 187-199. DOI 10.1016/S0022-460X(78)80028-5 | Zbl 0384.73027
[24] Scanlan, R. H.: The action of flexible bridges under wind, II: Buffeting theory. J. Sound Vib. 60 (1978), 201-211. DOI 10.1016/S0022-460X(78)80029-7 | Zbl 0384.73028
[25] Simiu, E., Scanlan, R. H.: Wind Effects on Structures: Fundamentals and Applications to Design. Wiley, New York (1996).
[26] Tajčová, G.: Mathematical models of suspension bridges. Appl. Math., Praha 42 (1997), 451-480. DOI 10.1023/A:1022255113612 | MR 1475052 | Zbl 1042.74535
[27] Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/A: Linear Monotone Operators. Springer, New York (1990). MR 1033497 | Zbl 0684.47028
Partner of
EuDML logo