Previous |  Up |  Next

Article

Title: Existence results for systems with nonlinear coupled nonlocal initial conditions (English)
Author: Bolojan, Octavia
Author: Infante, Gennaro
Author: Precup, Radu
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 140
Issue: 4
Year: 2015
Pages: 371-384
Summary lang: English
.
Category: math
.
Summary: The purpose of the present paper is to study the existence of solutions to initial value problems for nonlinear first order differential systems subject to nonlinear nonlocal initial conditions of functional type. The approach uses vector-valued metrics and matrices convergent to zero. Two existence results are given by means of Schauder and Leray-Schauder fixed point principles and the existence and uniqueness of the solution is obtained via a fixed point theorem due to Perov. Two examples are given to illustrate the theory. (English)
Keyword: nonlinear differential system
Keyword: nonlocal boundary condition
Keyword: nonlinear boundary condition
Keyword: fixed point
Keyword: vector-valued norm
Keyword: matrix convergent to zero
MSC: 34A12
MSC: 34A34
MSC: 34B10
MSC: 47H10
idZBL: Zbl 06537670
idMR: MR3432539
DOI: 10.21136/MB.2015.144455
.
Date available: 2015-11-17T20:42:18Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144455
.
Reference: [1] Agarwal, R. P., Meehan, M., O'Regan, D.: Fixed Point Theory and Applications.Cambridge Tracts in Mathematics 141 Cambridge University Press, Cambridge (2001). Zbl 0960.54027, MR 1825411, 10.1017/CBO9780511543005
Reference: [2] Aizicovici, S., Lee, H.: Nonlinear nonlocal Cauchy problems in Banach spaces.Appl. Math. Lett. 18 (2005), 401-407. Zbl 1084.34002, MR 2124297, 10.1016/j.aml.2004.01.010
Reference: [3] Alves, E., Ma, T. F., Pelicer, M. L.: Monotone positive solutions for a fourth order equation with nonlinear boundary conditions.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 3834-3841. Zbl 1177.34030, MR 2536292, 10.1016/j.na.2009.02.051
Reference: [4] Avalishvili, G., Avalishvili, M., Gordeziani, D.: On a nonlocal problem with integral boundary conditions for a multidimensional elliptic equation.Appl. Math. Lett. 24 (2011), 566-571. Zbl 1205.35085, MR 2749746, 10.1016/j.aml.2010.11.014
Reference: [5] Avalishvili, G., Avalishvili, M., Gordeziani, D.: On integral nonlocal boundary value problems for some partial differential equations.Bull. Georgian Natl. Acad. Sci. (N.S.) 5 (2011), 31-37. Zbl 1227.35015, MR 2839392
Reference: [6] Benchohra, M., Boucherif, A.: On first order multivalued initial and periodic value problems.Dyn. Syst. Appl. 9 (2000), 559-568. Zbl 1019.34008, MR 1843699
Reference: [7] Berman, A., Plemmons, R. J.: Nonnegative Matrices in the Mathematical Sciences.Classics in Applied Mathematics 9 SIAM, Philadelphia (1994). Zbl 0815.15016, MR 1298430
Reference: [8] Bolojan-Nica, O., Infante, G., Pietramala, P.: Existence results for impulsive systems with initial nonlocal conditions.Math. Model. Anal. 18 (2013), 599-611. Zbl 1301.34017, MR 3175667, 10.3846/13926292.2013.865678
Reference: [9] Bolojan-Nica, O., Infante, G., Precup, R.: Existence results for systems with coupled nonlocal initial conditions.Nonlinear Anal. 94 (2014), 231-242. Zbl 1288.34019, MR 3120688
Reference: [10] Boucherif, A.: First-order differential inclusions with nonlocal initial conditions.Appl. Math. Lett. 15 (2002), 409-414. Zbl 1025.34009, MR 1902272, 10.1016/S0893-9659(01)00151-3
Reference: [11] Boucherif, A.: Nonlocal Cauchy problems for first-order multivalued differential equations.Electron. J. Differ. Equ. (electronic only) 2002 (2002), Article No. 47, 9 pages. Zbl 1011.34002, MR 1907723
Reference: [12] Boucherif, A.: Differential equations with nonlocal boundary conditions.Proceedings of the Third World Congress of Nonlinear Analysts 47, Part 4, Catania, 2000 Elsevier Oxford Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 47 (2001), 2419-2430. Zbl 1042.34518, MR 1971648, 10.1016/S0362-546X(01)00365-0
Reference: [13] Boucherif, A., Precup, R.: Semilinear evolution equations with nonlocal initial conditions.Dynam. Systems Appl. 16 (2007), 507-516. MR 2356335
Reference: [14] Boucherif, A., Precup, R.: On the nonlocal initial value problem for first order differential equations.Fixed Point Theory 4 (2003), 205-212. Zbl 1050.34001, MR 2031390
Reference: [15] Byszewski, L.: Abstract nonlinear nonlocal problems and their physical interpretation.Biomathematics, Bioinformatics and Applications of Functional Differential Difference Equations H. Akca et al. Akdeniz Univ. Publ. Antalya, Turkey (1999).
Reference: [16] Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem.J. Math. Anal. Appl. 162 (1991), 494-505. Zbl 0748.34040, MR 1137634, 10.1016/0022-247X(91)90164-U
Reference: [17] Byszewski, L., Lakshmikantham, V.: Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space.Appl. Anal. 40 (1991), 11-19. Zbl 0694.34001, MR 1121321, 10.1080/00036819008839989
Reference: [18] Cabada, A.: An overview of the lower and upper solutions method with nonlinear boundary value conditions.Bound. Value Probl. (electronic only) 2011 (2011), Article No. 893753, 18 pages. Zbl 1230.34001, MR 2719294
Reference: [19] Cabada, A., Minhós, F. M.: Fully nonlinear fourth-order equations with functional boundary conditions.J. Math. Anal. Appl. 340 (2008), 239-251. Zbl 1138.34008, MR 2376151, 10.1016/j.jmaa.2007.08.026
Reference: [20] Cabada, A., Tersian, S.: Multiplicity of solutions of a two point boundary value problem for a fourth-order equation.Appl. Math. Comput. 219 (2013), 5261-5267. Zbl 1294.34016, MR 3009485, 10.1016/j.amc.2012.11.066
Reference: [21] Deimling, K.: Multivalued Differential Equations.W. de Gruyter Series in Nonlinear Analysis and Applications 1 Walter de Gruyter, Berlin (1992). Zbl 0820.34009, MR 1189795
Reference: [22] Franco, D., O'Regan, D., Perán, J.: Fourth-order problems with nonlinear boundary conditions.J. Comput. Appl. Math. 174 (2005), 315-327. Zbl 1068.34013, MR 2106442, 10.1016/j.cam.2004.04.013
Reference: [23] Frigon, M.: Applications of the Theory of Topological Transversality to Nonlinear Problems for Ordinary Differential Equations.Diss. Math. (Rozprawy Mat.) 296 French (1990). MR 1075674
Reference: [24] Frigon, M., Lee, J. W.: Existence principles for Carathéodory differential equations in Banach spaces.Topol. Methods Nonlinear Anal. 1 (1993), 95-111. Zbl 0790.34054, MR 1215260, 10.12775/TMNA.1993.009
Reference: [25] Goodrich, C. S.: On nonlinear boundary conditions satisfying certain asymptotic behavior.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 76 (2013), 58-67. Zbl 1264.34030, MR 2974249, 10.1016/j.na.2012.07.023
Reference: [26] Goodrich, C. S.: On nonlocal {BVP}s with nonlinear boundary conditions with asymptotically sublinear or superlinear growth.Math. Nachr. 285 (2012), 1404-1421. Zbl 1252.34032, MR 2959967, 10.1002/mana.201100210
Reference: [27] Goodrich, C. S.: Positive solutions to boundary value problems with nonlinear boundary conditions.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 417-432. Zbl 1237.34153, MR 2846811, 10.1016/j.na.2011.08.044
Reference: [28] Han, H.-K., Park, J.-Y.: Boundary controllability of differential equations with nonlocal condition.J. Math. Anal. Appl. 230 (1999), 242-250. Zbl 0917.93009, MR 1669625, 10.1006/jmaa.1998.6199
Reference: [29] Infante, G.: Nonlocal boundary value problems with two nonlinear boundary conditions.Commun. Appl. Anal. 12 (2008), 279-288. Zbl 1198.34025, MR 2499284
Reference: [30] Infante, G., Minhós, F. M., Pietramala, P.: Non-negative solutions of systems of {ODE}s with coupled boundary conditions.Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 4952-4960. Zbl 1280.34026, MR 2960289, 10.1016/j.cnsns.2012.05.025
Reference: [31] Infante, G., Pietramala, P.: Multiple nonnegative solutions of systems with coupled nonlinear boundary conditions.Math. Methods Appl. Sci. 37 (2014), 2080-2090. Zbl 1312.34060, MR 3248749, 10.1002/mma.2957
Reference: [32] Infante, G., Pietramala, P.: A cantilever equation with nonlinear boundary conditions.Electron. J. Qual. Theory Differ. Equ. (electronic only) 2009 (2009), Article No. 15, 14 pages. Zbl 1201.34041, MR 2558840
Reference: [33] Infante, G., Pietramala, P.: Eigenvalues and non-negative solutions of a system with nonlocal {BC}s.Nonlinear Stud. 16 (2009), 187-196. Zbl 1184.34027, MR 2527180
Reference: [34] Infante, G., Pietramala, P.: Existence and multiplicity of non-negative solutions for systems of perturbed Hammerstein integral equations.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 1301-1310. Zbl 1169.45001, MR 2527550, 10.1016/j.na.2008.11.095
Reference: [35] Jackson, D.: Existence and uniqueness of solutions to semilinear nonlocal parabolic equations.J. Math. Anal. Appl. 172 (1993), 256-265. Zbl 0814.35060, MR 1199510, 10.1006/jmaa.1993.1022
Reference: [36] Jankowski, T.: Ordinary differential equations with nonlinear boundary conditions.Georgian Math. J. 9 (2002), 287-294. Zbl 1013.34018, MR 1916067
Reference: [37] Karakostas, G. L., Tsamatos, P. C.: Existence of multiple positive solutions for a nonlocal boundary value problem.Topol. Methods Nonlinear Anal. 19 (2002), 109-121. Zbl 1071.34023, MR 1921888, 10.12775/TMNA.2002.007
Reference: [38] Nica, O.: Existence results for second order three-point boundary value problems.Differ. Equ. Appl. 4 (2012), 547-570. Zbl 1267.34040, MR 3052162
Reference: [39] Nica, O.: Initial-value problems for first-order differential systems with general nonlocal conditions.Electron. J. Differ. Equ. (electronic only) 2012 (2012), Article No. 74, 15 pages. Zbl 1261.34016, MR 2928611
Reference: [40] Nica, O.: Nonlocal initial value problems for first order differential systems.Fixed Point Theory 13 (2012), 603-612. Zbl 1286.34034, MR 3024343
Reference: [41] Nica, O., Precup, R.: On the nonlocal initial value problem for first order differential systems.Stud. Univ. Babeş-Bolyai, Math. 56 (2011), 113-125. Zbl 1274.34041, MR 2869720
Reference: [42] Ntouyas, S. K., Tsamatos, P. C.: Global existence for semilinear evolution equations with nonlocal conditions.J. Math. Anal. Appl. 210 (1997), Article No. ay975425, 679-687. Zbl 0884.34069, MR 1453198, 10.1006/jmaa.1997.5425
Reference: [43] O'Regan, D., Precup, R.: Theorems of Leray-Schauder Type and Applications.Series in Mathematical Analysis and Applications 3 Gordon and Breach Science Publishers, London (2001). Zbl 1045.47002, MR 1937722
Reference: [44] Pietramala, P.: A note on a beam equation with nonlinear boundary conditions.Bound. Value Probl. (electronic only) 2011 (2011), Article No. 376782, 14 pages. Zbl 1219.34028, MR 2679691
Reference: [45] Precup, R.: The role of matrices that are convergent to zero in the study of semilinear operator systems.Math. Comput. Modelling 49 (2009), 703-708. Zbl 1165.65336, MR 2483674, 10.1016/j.mcm.2008.04.006
Reference: [46] Precup, R.: Methods in Nonlinear Integral Equations.Kluwer Academic Publishers Dordrecht (2002). Zbl 1060.65136, MR 2041579
Reference: [47] Varga, R. S.: Matrix Iterative Analysis.Springer Series in Computational Mathematics 27 Springer, Dordrecht (2009). Zbl 1216.65042, MR 1753713
Reference: [48] Webb, J. R. L.: A unified approach to nonlocal boundary value problems.Dynamic Systems and Applications 5. Proc. of the 5th International Conf., Morehouse College, Atlanta, 2007 Dynamic Publishers Atlanta (2008), 510-515 G. S. Ladde et al. Zbl 1203.34033, MR 2468188
Reference: [49] Webb, J. R. L., Infante, G.: Semi-positone nonlocal boundary value problems of arbitrary order.Commun. Pure Appl. Anal. 9 (2010), 563-581. Zbl 1200.34025, MR 2600449, 10.3934/cpaa.2010.9.563
Reference: [50] Webb, J. R. L., Infante, G.: Non-local boundary value problems of arbitrary order.J. Lond. Math. Soc., II. Ser. 79 (2009), 238-258. Zbl 1165.34010, MR 2472143, 10.1112/jlms/jdn066
Reference: [51] Webb, J. R. L., Infante, G.: Positive solutions of nonlocal boundary value problems involving integral conditions.NoDEA, Nonlinear Differ. Equ. Appl. 15 (2008), 45-67. Zbl 1148.34021, MR 2408344, 10.1007/s00030-007-4067-7
Reference: [52] Webb, J. R. L., Lan, K. Q.: Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type.Topol. Methods Nonlinear Anal. 27 (2006), 91-115. Zbl 1146.34020, MR 2236412
Reference: [53] Xue, X.: Existence of semilinear differential equations with nonlocal initial conditions.Acta Math. Sin., Engl. Ser. 23 (2007), 983-988. Zbl 1129.34041, MR 2319608, 10.1007/s10114-005-0839-3
Reference: [54] Xue, X.: Existence of solutions for semilinear nonlocal Cauchy problems in Banach spaces.Electron. J. Differ. Equ. (electronic only) 2005 (2005), Article No. 64, 7 pages. Zbl 1075.34051, MR 2147144
.

Files

Files Size Format View
MathBohem_140-2015-4_1.pdf 264.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo